TensorFlow
TensorFlow小白的学习笔记,以实战为主,逐步深入学习TensorFlow和机器学习的各方面知识。
XD1998
但行好事 莫问前程
展开
-
【TensorFlow】实现、训练并评估简单的回归模型和分类模型
1 回归模型回归算法模型用来预测连续数值型,其目标不是分类值而是数字。为了评估这些回归预测值是否与实际目标相符,我们需要度量两者间的距离,打印训练过程中的损失,最终评估模型损失。这里使用的例子是从均值为1、标准差为0.1的正态分布中抽样随机数,然后乘以变量A,损失函数为L2正则损失函数。理论上,A的最优值是10,因为生成的样例数据均值是1。回归算法模型拟合常数乘法,目标值是10。1.1 实现...原创 2020-03-11 18:32:20 · 1354 阅读 · 0 评论 -
【TensorFlow】实现简单的鸢尾花分类器
代码实现及说明# python 3.6# TensorFlow实现简单的鸢尾花分类器import matplotlib.pyplot as pltimport tensorflow as tfimport numpy as npfrom sklearn import datasetssess = tf.Session()#导入数据iris = datasets.load_ir...原创 2020-03-11 14:49:04 · 775 阅读 · 0 评论 -
【TensorFlow】随机训练和批训练的比较与实现
一、随机训练和批训练随机训练:一次随机抽样训练数据和目标数据对完成训练。批训练:一次大批量训练取平均损失来进行梯度计算,批量训练大小可以一次上扩到整个数据集。批训练和随机训练的差异:优化器方法和收敛的不同批训练的难点在于:确定合适的batch_size二者比较训练类型优点缺点随机训练脱离局部最小一般需要更多的迭代次数才收敛批训练快速得到最小损失耗...原创 2020-03-11 11:52:48 · 726 阅读 · 0 评论 -
【TensorFlow】通过两个简单的例子实现反向传播
回归算法示例# python 3.6# TensorFlow实现反向传播import tensorflow as tfimport numpy as npsess = tf.Session()# 一、回归算法# 从均值为1、标准差为0.1的正态分布中抽样随机数,# 然后乘以变量A,损失函数为L2正则损失函数。# 理论上,A的最优值是10,因为生成的样例数据均值是1。# 1...原创 2020-03-11 10:33:34 · 588 阅读 · 0 评论 -
【TensorFlow】常用的损失函数及其TensorFlow实现
1 损失函数定义:将随机事件或其有关随机变量的取值映射为非负实数以表示该随机事件的“风险”或“损失”的函数。应用:作为学习准则与优化问题相联系,即通过最小化损失函数求解和评估模型。分类:回归问题、分类问题2 回归问题的损失函数首先创建预测序列和目标序列作为张量预测序列是(-1,1)的等差数列,目标值为0sess = tf.Session()x_vals = tf.linspace(...原创 2020-03-10 19:13:26 · 1826 阅读 · 1 评论 -
【Tensorflow】TensorFlow的嵌入layer和多层layer
计算图中的操作# python 3.6import tensorflow as tfimport numpy as npsess = tf.Session()# 将张量和占位符对象组成一个计算图,创建一个简单的分类器# 一、计算图中的操作# 1. 声明张量和占位符,创建numpy数组,传入计算图操作x_vals = np.array([1.,3.,5.,7.,9.])x_d...原创 2020-03-10 12:23:12 · 1084 阅读 · 0 评论 -
【Tensorflow】小白入门实战基础篇(下)
import tensorflow as tfimport numpy as npsess = tf.Session()# 一、矩阵运算# div返回的是商的向下取整 数据类型与输入数据类型一致print(sess.run(tf.div(3,4)))# truediv在除法前强制转换整数为浮点数print(sess.run(tf.truediv(3,4)))# 对浮点数进行整...原创 2020-03-10 10:58:12 · 193 阅读 · 0 评论 -
【Tensorflow】小白入门实战基础篇(上)
代码包含内容:创建张量、使用占位符和变量、矩阵计算import tensorflow as tfimport numpy as np# 创建张量zeros = tf.zeros([3, 3])ones = np.ones([3, 3])# 创建变量ones_var = tf.Variable(ones)# 变量初始化sess = tf.Session() # 创建图会话in...原创 2020-03-09 21:33:43 · 129 阅读 · 0 评论