730. Count Different Palindromic Subsequences

Given a string S, find the number of different non-empty palindromic subsequences in S, and return that number modulo 10^9 + 7.

A subsequence of a string S is obtained by deleting 0 or more characters from S.

A sequence is palindromic if it is equal to the sequence reversed.

Two sequences A_1, A_2, … and B_1, B_2, … are different if there is some i for which A_i != B_i.

Example 1:

Input: 
S = 'bccb'
Output: 6
Explanation: 
The 6 different non-empty palindromic subsequences are 'b', 'c', 'bb', 'cc', 'bcb', 'bccb'.
Note that 'bcb' is counted only once, even though it occurs twice.

Example 2:

Input: 
S = 'abcdabcdabcdabcdabcdabcdabcdabcddcbadcbadcbadcbadcbadcbadcbadcba'
Output: 104860361
Explanation: 
There are 3104860382 different non-empty palindromic subsequences, which is 104860361 modulo 10^9 + 7.

Note:

The length of S will be in the range [1, 1000].
Each character S[i] will be in the set {‘a’, ‘b’, ‘c’, ‘d’}.

思路:
难点在于如何划分子问题,才能保证更新dp时没有重复,其中需要解决重复元素子串的表达。为了保证每个子问题的回文在原问题中没有出现过,定义如下规则:子问题求出的回文串必须套上一层外壳,即子问题中的回文串集合Set = {s | s 为回文}, 有新的回文 s’ = “a” + s + “a” or “b” + s + “b”,….

定义函数如下f(i, j) 表示当前对应S[i,…j]的不重复回文串个数,于是有:

初始化: ans = 0
1、子问题的回文串批层外衣,有 ans += f(i + 1, j - 1) , 其中S[i] == S[j]
2、考虑”a_…a”, “…_”表示子问题的回文串,抽出a’= a…a,其中”…”表示x个a,那么有新的回文串aa…a 和 aa…aa,有ans += 2

class Solution {
    public int countPalindromicSubsequences(String S) {
        int n = S.length();
        int[][] next = new int[4][1010];
        int[][] prev = new int[4][1010];

        char[] cs = S.toCharArray();

        for (int i = 0; i < 4; ++i) Arrays.fill(next[i], n);
        for (int i = n - 1; i >= 0; --i) {
            int c = cs[i] - 'a';
            for (int j = 0; j < 4; ++j) next[j][i] = i + 1 == n ? n : next[j][i + 1];
            next[c][i] = i;
        }

        for (int i = 0; i < 4; ++i) Arrays.fill(prev[i], -1);
        for (int i = 0; i < n; ++i) {
            int c = cs[i] - 'a';   
            for (int j = 0; j < 4; ++j) prev[j][i] = i - 1 == -1 ? -1 : prev[j][i - 1];
            prev[c][i] = i;
        }
        dp = new int[1010][1010];
        return f(cs, next, prev, 0, n - 1);
    }

    int mod = 1000000000 + 7;
    int[][] dp;

    int f(char[] cs, int[][] next, int[][] prev, int s, int e) {
        if (s > e) return 0;
        if (dp[s][e] > 0) return dp[s][e];
        long ans = 0;
        for (int i = 0; i < 4; ++i) {
            int ns = next[i][s];
            int ne = prev[i][e];
            if (ns > ne) continue;
            if (ns != ne) ans += 1;
            ans ++;
            ans += f(cs, next, prev, ns + 1, ne - 1);
        }
        dp[s][e] = (int)(ans % mod);
        return dp[s][e];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值