Given an array of unique integers, each integer is strictly greater than 1.
We make a binary tree using these integers and each number may be used for any number of times.
Each non-leaf node’s value should be equal to the product of the values of it’s children.
How many binary trees can we make? Return the answer modulo 10 ** 9 + 7.
Example 1:
Input: A = [2, 4]
Output: 3
Explanation: We can make these trees: [2], [4], [4, 2, 2]
Example 2:
Input: A = [2, 4, 5, 10]
Output: 7
Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].
Note:
1 <= A.length <= 1000.
2 <= A[i] <= 10 ^ 9.
class Solution {
public int numFactoredBinaryTrees(int[] A) {
int MOD = 1_000_000_007;
int N = A.length;
Arrays.sort(A);
long[] dp = new long[N];
Arrays.fill(dp, 1);
Map<Integer, Integer> index = new HashMap();
for (int i = 0; i < N; ++i)
index.put(A[i], i);
for (int i = 0; i < N; ++i)
for (int j = 0; j < i; ++j) {
if (A[i] % A[j] == 0) { // A[j] is left child
int right = A[i] / A[j];
if (index.containsKey(right)) {
dp[i] = (dp[i] + dp[j] * dp[index.get(right)]) % MOD;
}
}
}
long ans = 0;
for (long x: dp) ans += x;
return (int) (ans % MOD);
}
}