统计学习方法(第2版)(李航)

  1. 统计学习的定义
    统计学习(statistical learning)是关于计算机基于数据构建统计模型并运用统计方法对数据进行预测与分析的一门学科。统计学习也称为统计机器学习(statistical machine learning)。
  2. 统计学习的特点
    统计学习以计算机及网络为平台,是建立在计算机及网络之上的;统计学习以数据为研究对象,是数据驱动的学科;统计学习的目的是对数据进行预测与分析,特别是对未知新数据进行预测与分析。
  3. 统计学习的三要素
    方法=模型+策略+算法。统计学习方法由模型、策略和算法构成,即统计学习方法的三要素。
  4. 监督学习的定义
    监督学习(supervised learning)是从标注的训练数据集中学习预测模型的机器学习技术。标注数据表示输入与输出对之间的映射关系。
  5. 损失函数的定义
    损失函数(loss function)或代价函数(cost function)用以度量预测错误的程度,它是f(X)和Y的非负实值函数,记作L(Y, f(X))。
  6. 风险函数的定义
    风险函数(risk function)或期望损失(expected loss)是理论上模型f(X)关于联合分布P(X,Y)的平均意义下的损失。

书:pan.baidu.com/s/1fJBrhrA9R2vswAS_4de6Cg?pwd=uind

《统计思维 程序员数学之概率统计 第2PDF》是一本有关统计思维和概率统计的书籍的PDF本。统计思维是一种学习和分析数据的方法论,它帮助我们了解和解释数据中的趋势和规律。程序员数学是指程序员在编程过程中所需要的数学知识。 这本第2的书籍对统计思维和概率统计的概念进行了详细的介绍和解释。它帮助读者了解概率统计的基本概念,如概率、随机变量、概率分布等,以及如何利用统计方法对数据进行分析和预测。此外,书中还介绍了一些统计学的基本原理和假设,如假设检验、置信区间等。 对于程序员来说,理解概率统计是非常重要的。在编程中,我们经常需要处理和分析大量的数据,因此掌握概率统计的知识可以帮助我们更好地理解和处理数据。通过使用统计方法,我们可以找到数据中的模式和趋势,从而改进我们的程序和算法。 这本书是以程序员的角度来介绍统计思维和概率统计的,因此对于具有编程背景的读者来说是非常有帮助的。它使用简洁明了的语言和示例来解释概念和方法,同时还提供了一些实际案例和练习题,帮助读者更好地理解和应用所学知识。 总的来说,《统计思维 程序员数学之概率统计 第2PDF》是一本适合程序员学习和应用概率统计的书籍,它提供了深入浅出的解释和实践案例,帮助读者掌握统计思维和概率统计的基本概念和方法。如果你是一个程序员,并且对统计学感兴趣,那么这本书是值得推荐的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值