最长上升子序列
链接: link.
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3]
输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7]
输出:1
思路:
首先明确dp[i]的含义是指0-i且包括i的各个位置中最长的上升子序列。
初始化:每个位置的初始状态就是它自己于是设置为1。
推导:对于第i个位置来说,它可能来自于j属于[0,i-1]的任意一个位置,所以i位置字符要与[0,i-1]各位置进行比较,若num[i]>num[j],
那么i就可能来自于j,此时dp[i] = dp[j]+1,但是不确定当前状态下dp[i]和(dp[j]+1)哪个更大,所以dp[i] = max(dp[i],dp[j]+1)。
结果返回dp中的最大值max(dp)即可。
python实现
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
dp = [1 for i in range(len(nums))]
for i in range(1,len(nums)):
for j in range(i):
if nums[i] > nums[j]:
dp[i] = max(dp[i],dp[j]+1)
return max(dp)
仅记录刷题过程以及需要注意的知识点,方便自己复习。