python数据结构与算法练习-(动态规划:最长上升子序列)

python数据结构与算法练习-动态规划问题

最长上升子序列

链接: link.

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

思路:

首先明确dp[i]的含义是指0-i且包括i的各个位置中最长的上升子序列。

初始化:每个位置的初始状态就是它自己于是设置为1。

推导:对于第i个位置来说,它可能来自于j属于[0,i-1]的任意一个位置,所以i位置字符要与[0,i-1]各位置进行比较,若num[i]>num[j],
那么i就可能来自于j,此时dp[i] = dp[j]+1,但是不确定当前状态下dp[i]和(dp[j]+1)哪个更大,所以dp[i] = max(dp[i],dp[j]+1)。

结果返回dp中的最大值max(dp)即可。

python实现

class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        dp = [1 for i in range(len(nums))]
        for i in range(1,len(nums)):
            for j in range(i):
                if nums[i] > nums[j]:
                    dp[i] = max(dp[i],dp[j]+1)
        return max(dp)

仅记录刷题过程以及需要注意的知识点,方便自己复习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值