梅尔频率倒谱系数(Mel-frequency cepstral coefficients,简称MFCCs)是一种常用于语音信号处理和语音识别的特征表示方法。它通过以下几个步骤计算得到:
- 预加重:对原始语音信号进行预加重,以增强高频部分的能量。
- 分帧:将预加重后的信号切分成短时帧,通常采用重叠窗口技术。
- 快速傅里叶变换(FFT):对每一帧的数据应用FFT,将时域信号转换到频域。
- 梅尔滤波器组设计:设计一组梅尔滤波器,这些滤波器在梅尔频率轴上均匀分布,用于模拟人耳对不同频率的感知差异。
- 梅尔滤波器组应用:将每一帧的频谱通过梅尔滤波器组,得到梅尔频谱。
- 对数运算:取梅尔频谱的对数,以增强低能量成分的辨别能力。
- 离散余弦变换(DCT):对每一帧的对数梅尔频谱应用DCT,得到梅尔频率倒谱系数(MFCCs)。
MFCCs在语音信号处理和语音识别中广泛应用,它们能够提取语音的重要特征,并对噪声和语音变化具有一定的鲁棒性。