深度学习-搭建TensorFlow深度学习开发环境

本文详细介绍了如何搭建TensorFlow深度学习开发环境,包括硬件需求、NVIDIA显卡驱动安装、Anaconda的使用和虚拟环境配置,以及解决模块下载问题的方法。重点讲述了通过Anaconda创建和管理Python环境,以及在环境中安装TensorFlow GPU版本的步骤,帮助读者高效构建深度学习开发环境。
摘要由CSDN通过智能技术生成

有问题欢迎在评论区留言,后续更新常见问题及解决方法。。。

一、深度学习应用的典型开发流程

在这里插入图片描述

二、深度学习训练所需的硬件

对于深度学习训练来说核心的执行硬件是GPU。TensorFlow官网对显卡的要求是:CUDA计算能力为3.5或更高的NVIDIA GPU卡。NVIDIA官网 所展示的部分GPU产品的CUDA计算能力如下:
在这里插入图片描述
其他产品请自行到NVIDIA官网查看:https://developer.nvidia.com/cuda-gpus#compute

三、NVIDIA显卡驱动安装(可跳过)

一般来说,使用中的电脑已经装有对应的显卡驱动,所以此操作可不做。
若真没有安装显卡驱动的可自行使用驱动精灵、360驱动大师进行安装。
Windows系统下,查看显卡驱动依次操作如下:
此电脑 -> 右键 -> 属性 -> 设备管理器 -> 显示适配器
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、释放NVIDIA显卡资源(可跳过)

为了把NVIDIA显卡的计算资源全部释放出来,建议将“Primary Display”的设置改为“IFGX”,这样英特尔集成显卡会作为主显示输出。具体操作如下:
默认情况下,BIOS中Chipset->System Agent(SA) configuration->Graphics configuration->Primary Display的设置是Auto,意思是当插上独立显卡时,独立显卡会作为主显示输出,把Auto改为IFGX。

五、深度学习开发环境所需的软件

5.1 Python和Anaconda

由于人工智能领域的相关库或框架都是用Python开发的(如scikit-learn、TensorFlow等),所以 Python 已经成为事实上的人工智能算法开发语言。Python强大好用的原因是其有数量庞大且功能相对完善的标准库和第三方库。但管理这些数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值