笔记
xf8964
这个作者很懒,什么都没留下…
展开
-
tensorflow2 加载数据方法总结
tensorflow2 加载数据方法总结1.tfrecord1.1 tfrecord 打包1.2 tfrecord 读取2.tf.data.Dataset3.tf.keras.utils.Sequence4.tf.keras.preprocessing.image.ImageDataGenerator1.tfrecordtfrecord 是将训练数据和label数据打包成二进制文件,然后在训练的时候可以快速的读取,节省io操作1.1 tfrecord 打包tfrecord_file = "train原创 2020-11-28 16:47:40 · 561 阅读 · 0 评论 -
将长方形转换为正方形
批量将长方形方框转换为正方形def rect2square(boxes): h = boxes[:, 3] - boxes[:, 1] w = boxes[:, 2] - boxes[:, 0] l = np.maximum(w, h) boxes[:, 0] = boxes[:, 0] + w * 0.5 - l * 0.5 boxes[:, 1] = boxes[:, 0] + h * 0.5 - l * 0.5 boxes[:, 2:4] = boxe原创 2020-11-28 16:09:40 · 1158 阅读 · 0 评论 -
交并比 iou
交并比在判定预测框和真实框之间的准确度的时候,我们可以用iou进行量化,如下图,黑框为真实框,红框为预测框,并集:橙色部分面积+蓝色部分面积交集:蓝色部分面积通过计算 交集 / 并集 的比值来量化预测结果的准确度,如果为1表示预测框和真实框重合def box_iou(box, boxes): """ :param box: [4,](x1,y1,x2,y2) :param boxes: [n,4] :return: [n] """ # bo原创 2020-11-28 15:51:55 · 563 阅读 · 0 评论 -
非极大值抑制
非极大值抑制在进行目标检测的时候,当多个方框都预测到同一个目标的时候,我们需要去除iou小的方框,源码如下def nms(boxes, threshold, method="Union"): """ :param boxes: (n, 9) [x1, y1, x2, y2, score, offset_x1, offset_y1, offset_x2, offset_y2] n表示有n个方框 :param threshold: 阈值 float :param metho原创 2020-11-28 15:33:36 · 151 阅读 · 0 评论 -
常用数据打乱方法总结
数据打乱方法1.标注文件说明2.读取标注文件1.排序打乱2.切片打乱3.当我们拿到一个数据集后,我们需要先从标注文件中读取数据,然后对其进行打乱(shuffle),我们那celeba数据集为例进行说明1.标注文件说明202599image_id x_1 y_1 width height000001.jpg 95 71 226 313000002.jpg 72 94 221 306000003.jpg 216 59 91 126000004.jpg 622 257原创 2020-11-28 15:19:09 · 2345 阅读 · 2 评论