URAL 1309 Dispute <函数关系的递推>

题意:

·        给你下列关系,求解f(n)

·        f(0) = 0,

·        f(n) = g(n, f(n-1)),

g(x,y) =((y-1)x5 +x3 – xy + 3x + 7y) % 9973

给你n,输出f(n)

分析:

f(n)=k1[n]*f(n) +k2[n]

k1[n] = n^5-n+7

k2[n] = n^5-n^3-3*n

m(M)为9973

f(x+m) = (A*f(x)+B)%m

f(x+2m) = (A*f(x+m)+B)%m


注意点:A是常量,B是随n%M变化而变化的

inputoutput
50
6300
#include <iostream>
#include <cstdio>
#include <map>
#include <vector>
using namespace std;
const int M = 9973;
int f_mp[M+3];
int k1[M+3],k2[M+3];
int ppow(int n,int p)
{
    int ted = n;
    while(p>1)
    {
        ted%=M;
        ted*=n;
        p--;
    }
    return ted%M;
}
int dfs(int x)
{
    if(x==0)
    {
        f_mp[0]=0;
        k1[0]= 7;k2[0] = 0;
         return  0;
    }

    int temp = dfs(x-1);
    int temp2 = ppow(x,5);
    int temp3 = ppow(x,3);
    k1[x] = (((temp2-x + 7)%M+M)%M);
    temp = (temp * k1[x])%M;
    k2[x]=(-(temp2 - temp3 - (3 *x)%M +M)%M+M)%M;
    temp = ((temp +k2[x] )%M+M)%M;
    f_mp[x]=temp;
    return temp;
}
void solve(int n)
{
    int A = 1;;
    int B = 0;
    int p = n%M;
    int q = n/M;
    dfs(M);
    int i;
    int k;
    for(i = p+M;i>=p+1;i--)
    {
        k=i%M;
        B = ((B+A*k2[k])%M+M)%M;
        A=((A*k1[k])%M+M)%M;
   }
    int ans = f_mp[p];
    for(i=0;i<q;i++)
    {
        ans = (((A*ans)%M+B)%M+M)%M;
    }
    cout << ans << endl;
}
int main()
{
    int n ;
    while(cin>>n)
       {
           solve(n);
       }
   return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值