POJ 3688 Cheat in the Game

传送门:http://poj.org/problem?id=3688

题意:金手指:有俩人玩一个取石子的游戏,你是裁判。游戏中有W块石头和N张卡片,卡片上分别写着数字Ai。玩家随机抽走一张卡片,按卡片上的数字从石头堆中取走相应数量的石头,如果石头不够,玩家重新抽卡片,取走最后一块石头的玩家获胜;如果石头堆为空仍然未分出胜负,则拿回所有石头和卡片重新开始。

现在先手玩家贿♂赂了你,请你帮他构造必胜条件。游戏中的卡片是固定的,但W可供你操作。问有多少小于或等于M的W满足要求。

分析:

推理与动态规划算法 

如果W只能表示成特定的n张卡片上的数字之和,那么:

  • 当n为偶数时,{先手一张,后手一张}循环n/2次拿完石头,后手玩家必胜。

  • 当n为奇数时,{先手一张,后手一张}循环n/2 + 1次拿完石头,先手玩家必胜。

如果W既可以表示成奇数张卡片数字之和,也可以表示成偶数张卡片数字之和,则两人都可能获胜;或者说没有必胜决策。

如果W既无法表示成奇数张卡片数字之和,也无法表示成偶数张卡片数字之和,则W无法用卡片取完,两人会一直玩到天荒地老,你这个裁判就变成了灯泡,而且是长明灯。

所以对题目有用的只有第一个如果分支。

这里有两份代码,一份wrong,一份ac,若能找出不同,你就彻底明白这道题了

wrong code:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;


int main()
{
    int n,m;
    int num[10005];
    bool dp[100010][2];
    while(scanf("%d %d",&n,&m)==2&&n)
    {
        memset(num,0,sizeof(num));
        memset(dp,false,sizeof(dp));
        for(int i=0;i<n;i++)
        {
            scanf("%d",&num[i]);
        }
        sort(num,num+n);
        int i,j;
        int ans = 0;
        for(i=0;i<n;i++)
            dp[num[i]][1] = true;
        for( i=1;i<n;i++)
        {
            for(j=m;j>num[i];j--)
            {
                if(dp[j-num[i]][0])
                    dp[j][1] = true;
                if(dp[j-num[i]][1])
                    dp[j][0] = true;
            }
        }
        for(i=1;i<=m;i++)
        {
            if(dp[i][1]&&(!dp[i][0]))ans++;
        }
        printf("%d\n",ans);
    }
    return 0;
}

AC code:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;


int main()
{
    int n,m;
    int num[10005];
    bool dp[100010][2];
    while(scanf("%d %d",&n,&m)==2&&n)
    {
        memset(num,0,sizeof(num));
        memset(dp,false,sizeof(dp));
        for(int i=0;i<n;i++)
        {
            scanf("%d",&num[i]);
        }
        //sort(num,num+n);//排不排序对这道题结果不影响,自己体会
        int i,j;
        int ans = 0;

        for( i=0;i<n;i++)
        {
            for(j=m;j>num[i];j--)
            {
                if(dp[j-num[i]][0])
                    dp[j][1] = true;
                if(dp[j-num[i]][1])
                    dp[j][0] = true;
            }
            dp[num[i]][1] = true;
        }
        for(i=1;i<=m;i++)
        {
            if(dp[i][1]&&(!dp[i][0]))ans++;
        }
        printf("%d\n",ans);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值