题意:
每个人有三种属性(a,b,c),1<=a,b,c<=M,一共有M^3个人,没有两个人的属性是完全相同的。其中有N个人成立了邪恶党,一个人能战胜另一个人的条件是至少有一个属性大于对方对应属性。问剩下M^3-N个人中有多少人可以战胜所有的邪恶党。
数据范围:1<=N<=10^5,2<=M<=10^5
分析:枚举,set优化
求M^3个组合中有多少个(a,b,c)满足a<=ai且b<=bi且c<=ci for at least one (ai,bi,ci) in N。
枚举每个c,求出对于每个邪恶(ai,bi,ci) ci>=c,然后进行处理,求出不符合的(ai,bi),area个数。对于每一个c,有ans = M^2-area;
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <set>
#define LL long long
#define maxn 100010
using namespace std;
struct Node
{
int x,y,z;
void read(int &x)
{
x=0;char ch;
do ch = getchar();while(ch<'0'||ch>'9');
do x=x*10+ch-'0',ch=getchar();while(ch<='9'&&ch>='0');
}
void read() {read(x);read(y);read(z);}
bool operator< (const Node& tmp) const {return x<tmp.x||(x==tmp.x&&y<tmp.y);}
Node(int x=0,int y=0,int z=0):x(x),y(y),z(z) {}
}p[maxn];
bool cmp(const Node& a,const Node& b) {return a.z>b.z;}
set<Node> s;
set<Node>::iterator it;
LL calc(const Node& a)
{
Node b=*--s.lower_bound(a),c=*s.upper_bound(a);
//printf("%d %d %d %d\n",a.y,c.y,a.x,b.x);
return 1LL*(a.y-c.y)*(a.x-b.x);
}
LL area;
void Add(const Node& a)
{
it=s.lower_bound(a);
if(it==s.end()||it->y<=a.y)
{
it=--s.upper_bound(a);
for(;it!=s.end()&&it->y<=a.y;) area-=calc(*it),s.erase(it--);
s.insert(a);area+=calc(a);
}
}
int n,m;
void Work()
{
int now=0;area = 0;LL ans =0;
for(int i =0;i<n;i++) p[i].read();
sort(p,p+n,cmp);
s.clear();
s.insert(Node(0,m+1,-1));s.insert(Node(m+1,0,-1));
for(int i=m;i;i--)
{
while(now<n&&p[now].z>=i) Add(p[now++]);
ans += (1LL*m*m-area);
}
printf("%lld\n",ans);
}
int main()
{
while(scanf("%d %d",&n,&m)==2&&(n+m))
{
Work();
}
return 0;
}