笔记
xff1994
这个作者很懒,什么都没留下…
展开
-
Ubuntu18.04 使用bochs运行SLS Linux及linux-0.12
赵炯老师的《Linux内核完全注释》一书由于成书较早,其第17章实验环境配置中的配置文件有些老,在Ubuntu18.04下不能直接运行。这里记录下需要修改的地方。安装bochs及运行sudo apt install bochs # ubuntu18.04 安装的是bochs2.6sudo apt install bochs-x下载赵炯老师书上的sls linux 代码,解压后进入文...原创 2020-03-29 23:10:46 · 1067 阅读 · 0 评论 -
latex 粗体的坑
latex的粗体一般用以下命令:\textbf{}:文本环境加粗。在数学环境使用的话,会使斜体效果消失。并且无法输出加粗的希腊字母。\mathbf{}:会变为粗体,但同样会导致数学字母斜体形式的丢失。\boldmath{}:数学环境里可以加粗且不会使斜体消失。需要添加amsmath宏包。boldsymbol{}:可以对希腊字母加粗。需要添加amsmath宏包。比较推荐的方式是添加宏包...原创 2020-02-18 20:42:47 · 10568 阅读 · 0 评论 -
chrome 插件清单
onetab plus:一件收容标签页reader view:阅读模式save to pocket:内容收集工具,稍后阅读神器octotree:github 代码目录树imagus:网页图片放大镜微博图床:微博图床video downloader:网页视频下载adblock:屏蔽广告infinity:好看高效的新标签页postman:模拟 http 请求达达划词翻译:划词翻译...原创 2019-11-29 16:44:27 · 341 阅读 · 0 评论 -
论文笔记:Generating Wikipedia by Summarizing Long Sequences
简介问题:multi-document abstractive summarization,where the input is a collection of related documents from which a summary is distilled。abstractive 与 extractiveextractive summarization:抽取文本句子作为 summa...原创 2019-11-24 20:29:49 · 1880 阅读 · 0 评论 -
SVM总结
SVM总结相关概念函数间隔γ^=yi(wxi+b)\hat\gamma = y_i(wx_i+b)γ^=yi(wxi+b)在分类超平面0wx+b=0wx+b=0wx+b=0确定的情况下,wx+bwx+bwx+b与yiy_iyi的符号情况可以衡量分类的正确性,而∣wx+b∣|wx+b|∣wx+b∣可以衡量点到超平面的距离,因此γ^\hat\gammaγ^可以衡量分类的正确性和确...原创 2019-07-02 23:23:32 · 298 阅读 · 0 评论 -
论文笔记:On the Strength of Character Language Models for Multilingual Named Entity Recognition
简介本文提出了一种简单的、语料库无关的Character-level Language Model(CLM)。该方法不需要上下文信息即可判断token是否是entity。作者进一步将该方法用于一些经典的NER系统中以提高其识别效果。Methods在CLM中,每一个token都被看成一个句子,每个字母看做一个词,比如“Obama”会被看做句子“O b a m a”,以此训练语言模型。本文方法...原创 2019-05-16 15:49:44 · 330 阅读 · 0 评论 -
论文笔记:ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learn
这篇文章是上一篇Membership Inference Attacks Against Machine Learning Models的跟踪研究,其提出了三个攻击模型,将上一篇中的模型一步步简化。第一个攻击模型是将上一篇中的影子模型数量降到一个,发现实验效果不会有啥下降。第二个模型放宽攻击者对目标模型训练集的限制,认为攻击者可以对其一无所知。影子模型的训练集采用的是和目标模型不同领域的数据集...原创 2019-05-10 10:24:03 · 3117 阅读 · 9 评论 -
Neural Fine-Grained Entity Type Classification with Hierarchy-Aware Loss
Problem对于FETC(Fine-grained Entity Type Classification)问题,当前常用的基于距离监督的的方法存在 out-of-context 和 overly-specific 的问题。比如上图中,对于实体 Steven Kerr,基于距离监督的方法会给出三个 label:{person,athlete,coach}。然而,对于句子 S1, 其只和 {p...原创 2019-05-19 16:19:14 · 890 阅读 · 0 评论 -
论文笔记:Ultra-Fine Entity Typing
最近被报名了一个比赛,比赛任务是命名实体识别相关的。之前根本就不了解这方面的东西,临时看了几篇论文,似懂非懂。简介文章提出了一种entity typing task:给定一个句子和一个entity mention,预测实体的类别(type)。其创新在于type的diversity,可以给出不同粒度上的type。主要利用的方法是基于head word 的距离监督。Task and Data...原创 2019-05-19 12:02:38 · 2843 阅读 · 0 评论 -
论文笔记:Membership Inference Attacks Against Machine Learning Models
Membership Inference Attacks Against Machine Learning Models简介:这篇文章关注机器学习模型的隐私泄露问题,提出了一种成员推理攻击:给出一条样本,可以推断该样本是否在模型的训练数据集中——即便对模型的参数、结构知之甚少,该攻击仍然有效。其核心在于其提出的shadow learning技术。问题设定考虑多分类问题,模型的输出是一个预测向...原创 2019-05-08 17:56:21 · 12676 阅读 · 24 评论 -
Linux常用软件清单
发行版推荐:ubuntu、deepin推荐软件官方原生wps for Linux:和 Windows 下近乎相同的使用体验。wps社区网易云音乐:与 Windows 版完全一样 。FoxitReader for Linux:与 win 版界面布局不同,但使用体验很好。Typora:好看又好用的 markdown 编辑器。Krita:PS 的Linux替代,界面、功能相似。Mails...原创 2019-04-19 09:03:05 · 454 阅读 · 0 评论 -
用lru_cache提高性能
leetcode 上有一题爬楼梯的题,一个n阶的台阶,每次可爬1阶或2阶,问有多少中爬法。这道题不难,就是一个斐波那契数列。我用循环写的,没啥问题。然后看评论里有人用递归写,说会超时。然后有人用了lru_cache装饰器来提高性能,顺利通过。lru即least recently used,lru_cache可以记录函数的调用结果,再次使用时直接使用之前的返回值,而不真的再次调用。from fu...原创 2019-04-10 14:24:22 · 4414 阅读 · 3 评论 -
差分隐私
上一篇介绍了数据脱敏的三种基本方法,这里介绍另一种方法——差分隐私。差分隐私的优点在于其不需要特殊的攻击假设,不关心攻击者拥有的背景知识,量化分析隐私泄露风险。核心研究问题:在满足差分隐私的前提下提高发布统计数据的可用性及算法的效率。ε-差分隐私保护对数据集D的各种映射函数被定义为查询(Query),用 F={f1,f2,⋅⋅⋅⋅⋅⋅}F=\{f1, f2, ······\}F={f1,f2...原创 2019-02-08 21:51:09 · 9016 阅读 · 1 评论 -
数据脱敏:k-anonymity,l-diversity,t-closeness
kkk-anonymityanonymityanonymity,l\mathcal{l}l-diversitydiversitydiversity和ttt-closenessclosenesscloseness数据时代,很多机构需要面向公众或研究者发布其收集的数据。然而,这些数据中可能包含这用户的隐私信息。这要求发布者在发布前进行脱敏处理。本文介绍三种数据脱敏方法/标准:k-anonymity、...原创 2018-10-18 16:42:09 · 24198 阅读 · 5 评论 -
Nominatim地图服务器安装教程
Nominatim地图服务器安装教程环境:Ubuntu16.04安装Nominatim安装依赖软件sudo apt-get install -y build-essential cmake g++ libboost-dev libboost-system-dev \ libboost-filesystem-dev libexpat1-dev zlib...翻译 2018-03-27 09:23:16 · 3903 阅读 · 3 评论 -
python argparse模块简介
argparse argparse模块可以用来方便地处理命令行参数。基本使用示例创建一个ArgumentParse对象,ArgumentParser对象可以将命令行参数转变为Python数据。>>> parser = argparse.ArgumentParser(description='Process some integers.')添加参数>>> par...原创 2018-03-12 12:06:52 · 527 阅读 · 0 评论