论文笔记:ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learn

这篇文章是上一篇Membership Inference Attacks Against Machine Learning Models的跟踪研究,其提出了三个攻击模型,将上一篇中的模型一步步简化。
第一个攻击模型是将上一篇中的影子模型数量降到一个,发现实验效果不会有啥下降。
第二个模型放宽攻击者对目标模型训练集的限制,认为攻击者可以对其一无所知。影子模型的训练集采用的是和目标模型不同领域的数据集。然后发现大多时候仍能取得不错的效果。这就比较玄幻了。
其实玄幻个锤子,这其实完全证明了我在上一篇最后的那个猜想,这种所谓成员推理攻击就是利用目标模型在训练数据上输出向量熵值低而在非训练数据上熵值高而已。文章的第三个攻击模型就是对这一猜想的验证,其直接将预测向量中的最大分量与一个阈值比对,超过阈值则认为是训练数据,否则就是非训练数据。
所以,这两篇文章,搞了一大堆实验,提出了个看似很牛逼的“成员推理攻击”,其实就是实验验证了下我们直观的认识:机器学习模型在训练数据上信心大,给出的预测向量往往是(0.1,0.1,0.8)这种;而在没见过的数据上,给出的大多是(0.3,0.3,0.4)这种。
对于这种文章,我不得不评论一句:傻逼!
在这里插入图片描述
向这种限制条件比较苛刻,对机器学习模型只有black-box查询权限的情况,我觉得这种“成员推理”是不现实的,就给你一个预测向量你推毛成员——你怎么保证成员和非成员不会拥有相似的预测向量?换个角度,两个完全不一样的数据集,完全有可能得到相同的机器学习模型。用SVM想想,这很容易做到。

在这种限制下,具体“成员推理”不现实,但是根据预测向量来复原训练数据集的一些统计特征应该是可以实现的,可以搞搞。

机器学习中的成员推理攻击指的是攻击者可以通过观察机器学习模型的输出,来推断训练数据中是否包含了特定的样本。这种攻击技术可以通过观察模型的输出统计信息,如分类概率或回归值,来判断模型对于某个特定样本的预测结果。成员推理攻击可能会对数据隐私造成威胁,尤其是当模型训练在敏感数据集上时。 针对成员推理攻击,也有一些防御方法可以采取。首先,可以对模型输出进行扰动处理,使得攻击者无法准确地推断出是否包含某个样本。这可以通过在模型输出中添加随机噪声或限制预测结果的精确度来实现。 其次,可以采用集成学习的方法,即使用多个模型进行预测,并对不同模型的输出进行统计,以减少攻击者的推断能力。通过使用不同的模型和数据划分,可以降低攻击者通过模型输出的统计信息来推测训练数据的可能性。 另外,数据隐私保护方法也可以用于防御成员推理攻击。例如,可以使用差分隐私技术,在训练数据中引入一定的随机噪声,以保护个体数据的隐私。这样可以防止攻击者通过观察模型的输出来进行有效的成员推理。 综上所述,成员推理攻击是机器学习中的一种隐私威胁,但通过添加扰动、集成学习和数据隐私保护等方法,我们可以减轻这种攻击带来的风险。然而,防御成员推理攻击仍然是一个开放的研究领域,需要进一步的研究和改进。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值