- 博客(7)
- 收藏
- 关注
原创 Identification of Important Nodes in Multilayer Heterogeneous Networks Incorporating Multirelational
这张图是论文方法的一个直观的例子,它画的是一个三层异质引文网络的示例,三层分别为:关键词层、论文层和作者层三层之间的连线分为两种:同边层(如作者–作者合作、论文–论文引用、关键词–关键词共现)和跨边层(如作者–论文、论文–关键词),在真实网络中,节点不仅在自己那层互联(比如作者之间互联),还通过跨层边连接到其他类型节点。MLC 方法的曲线整体最陡、最终传播率最高,明显优于度中心性、介数中心性、接近中心性、PageRank 等基线算法。最后,把所有辅助层的信息传回核心层(论文层),形成最终的重要性分数。
2025-10-17 20:15:17
616
原创 复杂系统与复杂网络
原胞自动机是一个由离散的、规则划分的“细胞”格网组成的系统,每一个细胞都处于一种有限的状态中。整个系统按照统一的、局部的规则在离散的时间步上同步更新。可以将它想象成一个由无数个小格子组成的棋盘,每个格子就像一个“细胞”。所有细胞遵循同一套简单的规则,根据自己和邻居当前的状态,决定自己下一刻的状态。整个棋盘就这样一步步地演化下去。它最初是一个描述种群增长的生态学模型,是马尔萨斯指数增长模型的修正版。马尔萨斯模型:假设资源无限,种群数量以指数形式增长。
2025-09-26 12:05:11
1060
原创 复杂网络建模:基于Python+NetworkX的实现
本文介绍了图论与网络科学的基础知识。主要内容包括:1) 邻接矩阵的表示方法,涵盖无权无向图、无权有向图、加权图等不同图类型的矩阵形式;2) 节点度、平均度及度分布的计算方法;3) 路径、距离和网络连通性的概念;4) 局部和全局集聚系数的定义与计算。文中还提供了Python代码示例,演示如何使用NetworkX库创建图、生成邻接矩阵、计算节点度分布等基本操作。这些基础概念和工具为后续网络分析提供了理论支撑和实践指导。
2025-09-26 12:01:40
410
原创 机器学习自用
举个例子,谷歌算法每天最主要的作用就是阅读成百上千的文章,将他们是在描述一个事情或者一类事情的文章分类在一起推送给某个特定的人群。或者当你搜索关于某个明星的时候,就会出现有关这个明星的报道等。:不是试图监督算法,为了给每个输入一个正确答案,而是我们需要弄懂这个模式有什么有趣的,可能有什么样的模式和结构。2.异常检测:人如其名,用于异常检测,例如银行账户异常、有人偷了你的钱巴拉巴拉。3.降维:压缩一个大数据集变为一个小的数据集,丢失尽可能少的信息。1.聚类算法:将有标签的数据尝试将他们自动分组到集群里面。
2024-11-08 22:44:32
230
原创 最大连续子数组和问题
因此,首先设置一个变量n,用于保存将要输入的整数个数,并创建一个一维数组a[n](在此处我们需要使用指针来动态分配数组空间),用于保存输入的整数。根据问题要求,“当所给的整数均为负数时定义子段和为0”,因此在完成输入后,我们立即检查输入的整数是否全为负数。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。
2024-04-09 16:41:54
431
原创 数据库笔记
数据是数据库中存储的基本对象定义:描述事物的符号记录被称为数据。描述事物的符号可以是数字,也可以是文字、图形、图像、声音、语言等,数据有种表现形式,它们都可以经过数字化后存入计算机。
2024-01-12 20:32:57
1532
7
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅