Spark_Bench使用文档

Spark_Bench使用文档

1. 什么是Spark-Bench

SparkBench是Spark的基准测试组件(集成了很多spark支持的经典测试案列)。 它大致包含四种不同类型的测试案例,包括机器学习,图形处理,流处理和SQL查询。

Spark-Bench所选择的测试案例可以,在不同的工作负载情况下测试出系统瓶颈; 目前,我们大致涵盖了CPU,内存和Shuffle以及IO密集型工作负载(测试案例)。

它还包括一个数据生成器,允许用户生成任意大小的输入数据。

2. 为什么是Spark-Bench

虽然Spark已经快速发展,但spark社区缺乏为Spark量身定做的基准测试组件。这种组件的目的是帮助用户了解不同系统设计之间的优缺点,同时指导如何进行Spark配置优化,更好的进行集群配置。特别是SparkBench有四个主要的用例。

用例1、它可以对Spark系统优化进行定量比较,如缓存策略优化、内存管理优化,调度策略优化的定量比较。研究开发人员可以使用SparkBench来全面评估、比较优化过后和原始Spark的性能差异。

用例2、它为不同平台和硬件集群设置(如Google云和Amazon云)提供定量比较。

用例3、它为集群大小和配置提供指导。它还有助于确定瓶颈资源,并最大限度地减少资源争用的影响。

用例4、它允许深入研究Spark系统在各种方面的性能影响,包括工作负载表征,参数影响研究,Spark系统的可扩展性和容错行为。

机器学习测试案例:逻辑回归、支持向量机、矩阵分解

图计算测试案例: PageRank、SVD++、三角计数(Triangle Count)

SQL查询测试案例:Hive、RDDRelation

流处理测试案例: Twitter Tag 、 Page View

其他测试案例:Kmeans , 线性回归 , 决策树,最短路径, 标签传播, 连通图,强连通图

3. 如何开始

3.1   系统环境配置

安装JDK,Hadoop,spark运行环境

1、要运行新版本的SparkBench, 在安装SparkBench之前要先下载并安装wikixmlj,进入到一个目录后直接执行clone命令下载

git clone https://github.com/synhershko/wikixmlj.git

cd wikixmlj

mvn package -Dmaven.test.skip=true

mvn intsll  -Dmaven.test.skip=true

注:上面两条mvn命令原本是mvn package install命令转换而来,直接运行打包和安装命令会报在test过程出错,所以我们要设置跳过测试打包和安装,运行成功后就会在wikixmlj/target/下载生成wikixmlj-1.0-SNAPSHOT.jar文件,同时会安装到maven 仓库中。

2、下载 SparkBench基准测试组件:

https://github.com/SparkTC/spark-bench/tree/legacy

解压后,首先运行bin目录下的build-all.sh文件去build整个SparkBench工程,在这个过程中主要是更据工程的pom.xml文件去网上下载SparkBench工程依赖的所有jar包。

./SPARK_BENCH_HOME/bin/build-all.sh

3、可以通过修改SPARK_BENCH_HOME的conf目录下的env.sh对配置Spark-Bench环境

SPARK_HOME=/home/hadoop/Spark-1.6.0-bin-hadoop2.6.0

HADOOP_HOME=/home/hadoop/hadoop-2.6.0

SPARK_MASTER=spark://master:7077

HDFS_MASTER=hdfs://master:9000/

3.2   SparkBench配置

可以通过修改SPARK_BENCH_HOME的conf目录下的env.sh对配置Spark-Bench环境,保证下列环境变量一定要设置。

SPARK_HOME=/home/hadoop/Spark-1.6.0-bin-hadoop2.6.0

HADOOP_HOME=/home/hadoop/hadoop-2.6.0

SPARK_MASTER=spark://master:7077

HDFS_MASTER=hdfs://master:9000/

 

Local mode:(本地模式)

DATA_HDFS="file:///home/whoami/SparkBench" SPARK_MASTER=local[2] MC_List=""

 

3.3   执行

Scala版本执行方式:

直接进入相应案例的目录的bin目录下,先自动生成测试数据,然后再运行

<SPARK_BENCH_HOME>/<Workload>/bin/gen_data.sh

<SPARK_BENCH_HOME>/<Workload>/bin/run.sh

 

Java版本执行方式:

<SparkBench_Root>/<Workload>/bin/gen_data_java.sh

<SparkBench_Root>/<Workload>/bin/run_java.sh

 

在运行SQL查询案例时应该注意的:

在运行SQL查询案例时,默认是运行其中的RDDRelation案例,如果要想运行其中的Hive案例可以执行下面代码:

<SPARK_BENCH_HOME>/SQL/bin/run.sh  hive

 

在运行Streaming案例时应该注意的:

在运行流数据处理案例时,例如TwitterTag,Streaming逻辑回归,

首先在一个终端中执行<SPARK_BENCH_HOME>/Streaming/bin/gen_data.sh

然后再另一个终端中执行<SPARK_BENCH_HOME>/Streaming/bin/run.sh

而且在执行脚本时必须要指定你要运行案例名字的参数,如下:

<SPARK_BENCH_HOME>/Streaming/bin/gen_data.sh TwitterPopularTags

<SPARK_BENCH_HOME>/Streaming/bin/run.sh TwitterPopularTags

当然你也可以在Streaming/conf/env.sh 配置文件中指定你要运行的子案例的名称,通过修改 subApp= TwitterPopularTags。

3.4   如何查看结果

可以直接去<SPARK_BENCH_HOME>/report  目录下去查看最后的结果

4. 高级配置

4.1   配置你要运行的案例

<SPARK_BENCH_HOME>/bin/run-all.sh 可以运行所有在<SPARK_BENCH_HOME>/bin/applications.lst中指定的所有案例,applications.list中每一行都指定一个要运行的案例。

当然你也可以单独运行每一个案例,在每一个案例的根目录下都有三个文件:

<Workload>/bin/config.sh    案例配置文件

<Workload>/bin/gen_data.sh  案例测试数据生成文件

<Workload>/bin/run.sh       案例运行文件

4.2   Apache Spark运行配置

 Spark运行时的各种配置可以在配置文件中指定,如指定下面的参数:

spark.executors.memory

 Executor memory,

standalone or YARN mode

spark.driver.memory

 Driver memory,

 standalone or YARN mode

spark.rdd.cache

------------------------------------以下是具体配置----------------------------

#配置附图

1.进入到conf文件配置env.sh

cd /opt/xintongyuan/spark-bench-legacy/conf

vim env.sh(修改下面画红线部分为现有集群环境)

SPARK_HOME The Spark installation location
HADOOP_HOME The HADOOP installation location
SPARK_MASTER Spark master
HDFS_MASTER HDFS master

Local mode:
DATA_HDFS="file:///home/whoami/SparkBench" SPARK_MASTER=local[2] MC_List=""

 

下面是调整spark执行参数部分(默认如下:)

SPARK_EXECUTOR_MEMORY=1g

 SPARK_DRIVER_MEMORY=2g

SPARK_EXECUTOR_INSTANCES=4

SPARK_EXECUTOR_CORES=1

 # Storage levels, see http://spark.apache.org/docs/latest/api/java/org/apache/spark/api/java/StorageLevels.html
# - STORAGE_LEVEL, set MEMORY_AND_DISK, MEMORY_AND_DISK_SER, MEMORY_ONLY, MEMORY_ONLY_SER, or DISK_ONLY
STORAGE_LEVEL=MEMORY_AND_DISK

# for data generation
NUM_OF_PARTITIONS=2
# for running
NUM_TRIALS=1

备注:如果集群开启了kerberos认证,则所有节点均需要登录同一用户,否则报错,参考下面issue

http://community.cloudera.com/t5/Advanced-Analytics-Apache-Spark/Issue-on-running-spark-application-in-Yarn-cluster-mode/m-p/50719

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盒马coding

你的支持是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值