量子力学摘记2

5. 量子体系状态、算符与可观测量、表象

∙ \quad\bullet  量子体系状态
\qquad
\qquad 量子体系的状态用一个态矢量 ∣ ψ ⟩ \vert\psi\rangle ψ 描述,态矢量满足线性叠加性(即态叠加原理):

∣ ψ ⟩ = c 1 ∣ ψ 2 ⟩ + c 2 ∣ ψ 2 ⟩ ∣ ψ ⟩ = ∑ n c n ∣ ψ n ⟩ \qquad\qquad\begin{aligned}\vert\psi\rangle&=c_1\vert\psi_2\rangle+c_2\vert\psi_2\rangle \\ \vert\psi\rangle&=\sum_n c_n\vert\psi_n\rangle \end{aligned} ψψ=c1ψ2+c2ψ2=ncnψn
\qquad 右矢 (ket) \text{(ket)} (ket)厄密共轭 (H.c.) \text{(H.c.)} (H.c.)定义为左矢 (bra) \text{(bra)} (bra),记为: ⟨ ψ ∣ = ( ∣ ψ ⟩ ) † \langle\psi\vert=(\vert\psi\rangle)^\dagger ψ=(ψ),并有:
( 1 ) \qquad(1) (1) 态矢 ∣ ψ ⟩ \vert\psi\rangle ψ ∣ φ ⟩ \vert\varphi\rangle φ 的内积,记为: ⟨ ψ ∥ φ ⟩ ≡ ⟨ ψ ∣ φ ⟩ \langle\psi\Vert\varphi\rangle\equiv\langle\psi\vert\varphi\rangle ψφψφ
( 2 ) \qquad(2) (2) 态矢 ∣ ψ ⟩ \vert\psi\rangle ψ ∣ φ ⟩ \vert\varphi\rangle φ 的正交性,记为: ⟨ ψ ∣ φ ⟩ = 0 \langle\psi\vert\varphi\rangle=0 ψφ=0
( 3 ) \qquad(3) (3) 态矢 ∣ ψ ⟩ \vert\psi\rangle ψ的归一性,记为: ⟨ ψ ∣ ψ ⟩ = 1 \langle\psi\vert\psi\rangle=1 ψψ=1

\qquad
∙ \quad\bullet  算符与可观测量 (Observable) \text{(Observable)} (Observable)
\qquad
\qquad 在量子力学中,用算符来表示微观粒子的力学量。对一个可观测的力学量进行测量,其结果都是实数。因此,与可观测量相对应的算符都是厄密算符

\qquad 把一个一般的力学量 A A A(比如位置、动量、角动量、能量)所对应的厄密算符写成 A ^ \hat{A} A^,则有本征方程 A ^ ∣ ψ n ⟩ = a n ∣ ψ n ⟩ \hat{A}\vert\psi_n\rangle=a_n\vert\psi_n\rangle A^ψn=anψn,其中 a n a_n an本征值 ∣ ψ n ⟩ \vert\psi_n\rangle ψn本征矢量
( 1 ) \qquad(1) (1) 本征值是实数: a n = a n ∗ a_n=a_n^\ast an=an,此处为复数共轭 (C.c.) \text{(C.c.)} (C.c.)
( 2 ) \qquad(2) (2) 属于不同本征值的本征矢相互正交: ⟨ ψ n ∣ ψ m ⟩ = 0 \langle\psi_n\vert\psi_m\rangle=0 ψnψm=0
( 3 ) \qquad(3) (3) 本征矢的完备性条件: ∑ n ∣ ψ n ⟩ ⟨ ψ n ∣ = I \sum_n\vert\psi_n\rangle\langle\psi_n\vert=I nψnψn=I

⇒ \qquad\Rightarrow  由完备性条件,任意态矢 ∣ ψ ⟩ \vert\psi\rangle ψ 可由算符的本征矢展开为:

∣ ψ ⟩ = ∑ n ∣ ψ n ⟩ ⟨ ψ n ∣ ψ ⟩ = ∑ n c n ∣ ψ n ⟩ , c n = ⟨ ψ n ∣ ψ ⟩ \qquad\qquad\qquad\vert\psi\rangle=\displaystyle\sum_n\vert\psi_n\rangle\langle\psi_n\vert\psi\rangle=\displaystyle\sum_nc_n\vert\psi_n\rangle,\quad c_n=\langle\psi_n\vert\psi\rangle ψ=nψnψnψ=ncnψn,cn=ψnψ
在这里插入图片描述

图片引自https://zhuanlan.zhihu.com/p/183187859

\qquad
⇒ \qquad\Rightarrow  若态矢 ∣ ψ ⟩ \vert\psi\rangle ψ 已经归一化,则

⟨ ψ ∣ ψ ⟩ = ∑ m ∑ n c m ∗ c n ⟨ m ∣ n ⟩ = ∑ m ∑ n c m ∗ c n δ m n = ∑ n c n ∗ c n = ∑ n ∣ c n ∣ 2 = 1 \qquad\qquad\qquad\langle\psi\vert\psi\rangle=\displaystyle\sum_m\sum_nc_m^\ast c_n\langle m\vert n\rangle=\sum_m\sum_nc_m^\ast c_n\delta_{mn}=\sum_nc_n^\ast c_n=\sum_n\vert c_n\vert^2=1 ψψ=mncmcnmn=mncmcnδmn=ncncn=ncn2=1
\qquad    其中, c n ∗ c n = ∣ c n ∣ 2 c_n^\ast c_n=\vert c_n\vert^2 cncn=cn2 表示当量子体系处于量子态 ∣ ψ ⟩ \vert\psi\rangle ψ 时,测量力学量 A A A 取值为 a n a_n an 的概率。
\qquad
⇒ \qquad\Rightarrow  力学量 A A A 在态 ∣ ψ ⟩ \left\vert\psi\right\rangle ψ 中的期望值 ⟨ A ⟩ = ⟨ ψ ∣ A ^ ∣ ψ ⟩ \langle A\rangle=\langle\psi\vert\hat{A}\vert\psi\rangle A=ψA^ψ

在全同体系组成的系综中,每个体系都处于相同的 ∣ ψ ⟩ \vert\psi\rangle ψ 态,每次测量都可能会得到不同结果。期望值就是对含有相同体系的系综中不同体系的重复测量的平均值。
期望值不是对同一个体系的重复测量,对同一个体系进行重复测量会导致波函数的坍缩。

\qquad
\qquad 因此,力学量算符的本征值就是力学量的实际可能值,实验测量只能测得本征值。

( 1 ) \qquad(1) (1) 若系统处于力学量算符 A ^ \hat{A} A^ 的本征态 ∣ ψ n ⟩ \vert\psi_n\rangle ψn ,则测量力学量 A A A 得到相应的本征值 a n a_n an ,测量后系统仍处于本征态 ∣ ψ n ⟩ \vert\psi_n\rangle ψn ,这种情况下的测量结果是完全确定的,没有随机性。

( 2 ) \qquad(2) (2) 若系统处于线性叠加态 ∣ ψ ⟩ = ∑ n c n ∣ ψ n ⟩ \vert\psi\rangle=\sum_nc_n\vert\psi_n\rangle ψ=ncnψn,则测量力学量 A A A 时以概率 ∣ c n ∣ 2 \vert c_n\vert^2 cn2 得到本征值 a n a_n an,若测量得到了本征值 a n a_n an,则测量后系统坍缩到相应的本征态 ∣ ψ n ⟩ \vert\psi_n\rangle ψn,再次测量均为本征值 a n a_n an,也就是由于测量导致了波函数的坍缩 (collapse) \text{(collapse)} (collapse)

采用一般的写法: A ^ ψ n = a n ψ n \hat{A}\psi_n=a_n\psi_n A^ψn=anψn,其解为: { ψ = ψ 1 , ψ 2 , ⋯   , ψ n , ⋯ a = a 1 , a 2 , ⋯   , a n , ⋯ \begin{cases}\psi=\psi_1,\psi_2,\cdots,\psi_n,\cdots\\ a=a_1,a_2,\cdots,a_n,\cdots\end{cases} {ψ=ψ1,ψ2,,ψn,a=a1,a2,,an,
(1)如果粒子刚好处于某个本征态 ψ n \psi_n ψn,则力学量的取值就是相应的本征值 a n a_n an
(2)如果粒子处于线性叠加态 ψ = ∑ n c n ψ n \psi=\sum_nc_n\psi_n ψ=ncnψn,则测量力学量会以概率 ∣ c n ∣ 2 \vert c_n\vert^2 cn2 得到本征值 a n a_n an
 
若要求任何状态的波函数 ψ \psi ψ 能够表示成 ψ = ∑ n c n ψ n \psi=\sum_nc_n\psi_n ψ=ncnψn,则 ψ 1 , ψ 2 , ⋯   , ψ n , ⋯ \psi_1,\psi_2,\cdots,\psi_n,\cdots ψ1,ψ2,,ψn, 必须是完备函数系(也称完全系)。这就要求力学量算符 A ^ \hat{A} A^ 必须是厄密算符,因为厄米算符(对应于不同特征值)的本征函数是相互正交的。满足这个条件的算符所代表的力学量,就称为可观测量 (Observable) \text{(Observable)} (Observable)

\qquad
∙ \quad\bullet  表象 (representation) \text{(representation)} (representation)

\qquad 表象的引入从某一力学量算符出发。

离散表象
\qquad
\qquad 假设某一力学量算符 A ^ \hat{A} A^本征方程 A ^ ∣ ψ n ⟩ = a n ∣ ψ n ⟩ \hat{A}\vert\psi_n\rangle=a_n\vert\psi_n\rangle A^ψn=anψn,将 A ^ \hat{A} A^ 的正交归一的本征态 { ∣ ψ n ⟩ } \{\vert\psi_n\rangle\} {ψn⟩} 简记为 { ∣ n ⟩ } \{\vert n\rangle\} {n⟩}

\qquad { ∣ n ⟩ } \{\vert n\rangle\} {n⟩} 作为基矢,就可张起一个完备的矢量空间(希尔伯特空间),用该空间中的基矢 { ∣ n ⟩ } \{\vert n\rangle\} {n⟩} 来表示其他量子态与力学量算符,称为 A A A 表象。

\qquad 在离散表象 A A A 中,任意态矢 ∣ ψ ⟩ \vert\psi\rangle ψ 可由基矢 { ∣ n ⟩ } \{\vert n\rangle\} {n⟩} 的线性叠加 ∣ ψ ⟩ = ∑ n c n ∣ n ⟩ \vert\psi\rangle=\sum_nc_n\left\vert n\right\rangle ψ=ncnn 构成,系数 c n = ⟨ n ∣ ψ ⟩ c_n=\langle n\vert\psi\rangle cn=nψ 为态矢 ∣ ψ ⟩ \left\vert\psi\right\rangle ψ 在基矢 ∣ n ⟩ \vert n\rangle n 上的投影,满足归一化条件 ∑ n ∣ c n ∣ 2 = 1 \sum_n\vert c_n\vert^2=1 ncn2=1 。由于作为基矢的 { ∣ n ⟩ } \{\vert n\rangle\} {n⟩} 是已知的,知道了 { c n } \{c_n\} {cn} 就知道了 ∣ ψ ⟩ \vert\psi\rangle ψ

\qquad c n c_n cn 排成列矢量,就表示态矢 ∣ ψ ⟩ \vert\psi\rangle ψ 在(离散)表象 A A A 中的“波函数” ψ ( A ) \psi(A) ψ(A)

ψ ( A ) ≡ [ ⟨ 1 ∣ ψ ⟩ ⟨ 2 ∣ ψ ⟩ ⋮ ⟨ n ∣ ψ ⟩ ⋮ ] = [ c 1 c 2 ⋮ c n ⋮ ] , ψ † ( A ) ≡ [ ⟨ ψ ∣ 1 ⟩    ⟨ ψ ∣ 2 ⟩    ⋯    ⟨ ψ ∣ n ⟩    ⋯   ] = [ c 1 ∗    c 2 ∗    ⋯    c n ∗    ⋯   ] \qquad\qquad\psi(A)\equiv\begin{bmatrix}\langle 1\vert\psi\rangle\\\langle 2\vert\psi\rangle\\\vdots\\\langle n\vert\psi\rangle\\\vdots\end{bmatrix}=\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\\\vdots\end{bmatrix},\quad\psi^\dagger(A)\equiv[\langle\psi\vert1\rangle\ \ \langle\psi\vert2\rangle\ \ \cdots\ \ \langle\psi\vert n\rangle\ \ \cdots]=[c_1^\ast\ \ c_2^\ast\ \ \cdots\ \ c_n^\ast\ \ \cdots] ψ(A) 1∣ψ2∣ψnψ = c1c2cn ,ψ(A)[⟨ψ∣1  ψ∣2    ψn  ]=[c1  c2    cn  ]

ψ ( A ) \psi(A) ψ(A) 为态矢 ∣ ψ ⟩ \vert\psi\rangle ψ 在表象 A A A 中“波函数”。
ψ ( A ) \psi(A) ψ(A) 是列矢量,是态矢 ∣ ψ ⟩ \vert\psi\rangle ψ 在表象 A A A 中的矩阵表示; ψ † ( A ) \psi^\dagger(A) ψ(A) 是行矢量,是 ⟨ ψ ∣ \langle\psi\vert ψ 在表象 A A A 中的矩阵表示。

\qquad 一个微观量子态用抽象的态矢 ∣ ψ ⟩ \vert\psi\rangle ψ 描述,与表象无关;态矢 ∣ ψ ⟩ \vert\psi\rangle ψ 在某表象基矢上的投影,就是态矢 ∣ ψ ⟩ \vert\psi\rangle ψ 在该表象的波函数。使用狄拉克符号可以使得“态矢”与“波函数”区分开来。

同一个态 ∣ ψ ⟩ \vert\psi\rangle ψ 在不同的表象中用“波函数”来描写。所选取的表象不同,波函数的形式也不同,但它们描写的是同一个量子态
(1)选取一个特定的表象 A A A,就相当于选取了一个特定的坐标系,该坐标系由表象 A A A 的本征矢 { ∣ n ⟩ } \{\vert n\rangle\} {n⟩} 作为基矢
(2)波函数中的 c 1 , c 2 , ⋯   , c n , ⋯ c_1,c_2,\cdots,c_n,\cdots c1,c2,,cn, 是态矢 ∣ ψ ⟩ \vert\psi\rangle ψ 在表象 A A A 中沿各基矢 ∣ n ⟩ \vert n\rangle n 方向的“分量”

\qquad
连续表象

\qquad 以一维运动为例,粒子的位置算符记为 x ^ \hat{x} x^,其本征值为 x , x ′ , x ′ ′ , ⋯ x,x^\prime,x^{\prime\prime},\cdots x,x,x′′,,相应的本征矢记为 ∣ x ⟩ , ∣ x ′ ⟩ , ∣ x ′ ′ ⟩ , ⋯ \vert x\rangle,\vert x^\prime\rangle,\vert x^{\prime\prime}\rangle,\cdots x,x,x′′,,满足本征方程:

x ^ ∣ x ⟩ = x ∣ x ⟩ , x ^ ∣ x ′ ⟩ = x ′ ∣ x ′ ⟩ \qquad\qquad\qquad\hat{x}\vert x\rangle=x\vert x\rangle,\qquad\hat{x}\vert x^\prime\rangle=x^\prime\vert x^\prime\rangle x^x=xx,x^x=xx

\qquad 由于本征值可以连续变化,因此 x x x 表象是连续表象

\qquad 连续变量 x x x 表象中:
( 1 ) \qquad(1) (1) 完备性条件为 ∫ d x ∣ x ⟩ ⟨ x ∣ = I \displaystyle\int\mathrm{d}x\vert x\rangle\langle x\vert=I dxxx=I
\qquad   任意态矢 ∣ ψ ⟩ \vert\psi\rangle ψ 可以展开为: ∣ ψ ⟩ = ∫ d x ∣ x ⟩ ⟨ x ∣ ψ ⟩ = ∫ d x ∣ x ⟩ ψ ( x ) \vert\psi\rangle=\displaystyle\int\mathrm{d}x\vert x\rangle\langle x\vert\psi\rangle=\displaystyle\int\mathrm{d}x\vert x\rangle\psi(x) ψ=dxxxψ=dxxψ(x)
\qquad   其中 ψ ( x ) = ⟨ x ∣ ψ ⟩ \psi(x)=\langle x\vert\psi\rangle ψ(x)=xψ 是态矢 ∣ ψ ⟩ \vert\psi\rangle ψ x x x 表象中的波函数。

( 2 ) \qquad(2) (2) 正交性为 ⟨ x ∣ x ′ ⟩ = δ ( x − x ′ ) \langle x\vert x^\prime\rangle=\delta(x-x^\prime) xx=δ(xx)

( 3 ) \qquad(3) (3) 归一化条件 ⟨ ψ ∣ ψ ⟩ = 1 \langle\psi\vert\psi\rangle=1 ψψ=1

⟨ ψ ∣ ψ ⟩ = ⟨ ψ ∣ ∫ d x ∣ x ⟩ ⟨ x ∣ ψ ⟩ = ∫ d x ⟨ ψ ∣ x ⟩ ⟨ x ∣ ψ ⟩ = ∫ d x ψ ∗ ( x ) ψ ( x ) = ∫ d x ∣ ψ ( x ) ∣ 2 = 1 \qquad\qquad\qquad\begin{aligned}\langle\psi\vert\psi\rangle&=\langle\psi\vert\int\mathrm{d}x\vert x\rangle\langle x\vert\psi\rangle \\ &=\int\mathrm{d}x\langle\psi\vert x\rangle\langle x\vert\psi\rangle \\ &=\int\mathrm{d}x\psi^\ast(x)\psi(x) \\&=\int\mathrm{d}x\vert\psi(x)\vert^2=1 \end{aligned} ψψ=ψdxxxψ=dxψxxψ=dxψ(x)ψ(x)=dxψ(x)2=1
\qquad 其中, ∣ ψ ( x ) ∣ 2 \vert\psi(x)\vert^2 ψ(x)2 为概率密度, ψ ∗ ( x ) ψ ( x ) d x \psi^\ast(x)\psi(x)\mathrm{d}x ψ(x)ψ(x)dx 表示体系处于量子态 ∣ ψ ⟩ \vert\psi\rangle ψ x ^ \hat{x} x^ 的本征值在 ( x , x + d x ) (x,x+\mathrm{d}x) (x,x+dx) 之间的的概率。

常用的连续表象有:坐标表象、动量表象
常用的离散表象有:能量表象、角动量表象

\qquad

6. 量子力学的矩阵表示

\qquad 选定某一个力学量 A A A,代表它的线性厄密算符 A ^ \hat{A} A^本征方程 A ^ ∣ n ⟩ = a n ∣ n ⟩ \hat{A}\vert n\rangle=a_n\vert n\rangle A^n=ann,算符 A ^ \hat{A} A^ 的正交归一的本征态为 { ∣ n ⟩ } \{\vert n\rangle\} {n⟩},特征值为 a n a_n an,即包含如下关系:

{ A ^ ∣ n ⟩ = a n ∣ n ⟩ , ⟨ n ∣ A ^ † = ⟨ n ∣ a n ∣ ψ ⟩ = ∑ n c n ∣ n ⟩ , c n = ⟨ n ∣ ψ ⟩ , c n ∗ = ⟨ ψ ∣ n ⟩ ⟨ n ∣ k ⟩ = δ n k ∑ n ∣ n ⟩ ⟨ n ∣ = I ⟨ ψ ∣ ψ ⟩ = 1 \qquad\qquad\qquad\begin{cases}\hat{A}\vert n\rangle=a_n\vert n\rangle,\qquad\langle n\vert\hat{A}^\dagger=\langle n\vert a_n \\ \vert\psi\rangle=\sum_nc_n\left\vert n\right\rangle,\quad c_n=\langle n\vert\psi\rangle,\quad c_n^\ast=\langle\psi\vert n\rangle \\ \langle n\vert k\rangle=\delta_{nk} \\ \sum_n\vert n\rangle\langle n\vert=I \\ \langle\psi\vert\psi\rangle=1 \end{cases} A^n=ann,nA^=nanψ=ncnn,cn=nψ,cn=ψnnk=δnknnn=Iψψ=1

\qquad
∙ \quad\bullet\quad 线性算符的矩阵表示
\qquad
\qquad 假设任意力学量算符 F ^ \hat{F} F^ 作用于归一化的态矢 ∣ ψ ⟩ \vert\psi\rangle ψ 后变成了态矢 ∣ ϕ ⟩ \vert\phi\rangle ϕ,即 F ^ ∣ ψ ⟩ = ∣ ϕ ⟩ \hat{F}\vert\psi\rangle=\vert\phi\rangle F^ψ=ϕ。令态矢 ∣ ψ ⟩ \vert\psi\rangle ψ 在表象 A A A 中的波函数为 ψ ( A ) \psi(A) ψ(A),态矢 ∣ ϕ ⟩ \vert\phi\rangle ϕ 在表象 A A A 中的波函数为 ϕ ( A ) \phi(A) ϕ(A),也就是

∣ ψ ⟩ = ∑ n c n ∣ n ⟩ , ψ ( A ) ≡ [ ⟨ 1 ∣ ψ ⟩ ⟨ 2 ∣ ψ ⟩ ⋮ ⟨ n ∣ ψ ⟩ ⋮ ] = [ c 1 c 2 ⋮ c n ⋮ ] \qquad\qquad\qquad\vert\psi\rangle=\sum_nc_n\left\vert n\right\rangle,\quad\psi(A)\equiv\begin{bmatrix}\langle 1\vert\psi\rangle\\\langle 2\vert\psi\rangle\\\vdots\\\langle n\vert\psi\rangle\\\vdots\end{bmatrix}=\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\\\vdots\end{bmatrix} ψ=ncnn,ψ(A) 1∣ψ2∣ψnψ = c1c2cn

∣ ϕ ⟩ = ∑ m b m ∣ m ⟩ , ϕ ( A ) ≡ [ ⟨ 1 ∣ ϕ ⟩ ⟨ 2 ∣ ϕ ⟩ ⋮ ⟨ m ∣ ϕ ⟩ ⋮ ] = [ b 1 b 2 ⋮ b m ⋮ ] \qquad\qquad\qquad\vert\phi\rangle=\sum_mb_m\left\vert m\right\rangle,\quad\phi(A)\equiv\begin{bmatrix}\langle 1\vert\phi\rangle\\\langle 2\vert\phi\rangle\\\vdots\\\langle m\vert\phi\rangle\\\vdots\end{bmatrix}=\begin{bmatrix}b_1\\b_2\\\vdots\\b_m\\\vdots\end{bmatrix} ϕ=mbmm,ϕ(A) 1∣ϕ2∣ϕmϕ = b1b2bm

\qquad 算符 F ^ \hat{F} F^ 在离散表象 A A A 中表现为一个矩阵 F ( A ) F(A) F(A),记为 [ F ] [F] [F],那么:

[ F ] ψ ( A ) = [ F 11 F 12 ⋯ F 1 n ⋯ F 21 F 22 ⋯ F 2 n ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ F m 1 F m 2 ⋯ F m n ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ] [ c 1 c 2 ⋮ c n ⋮ ] = [ b 1 b 2 ⋮ b m ⋮ ] = ϕ ( A ) \qquad\qquad\qquad[F]\psi(A)=\begin{bmatrix}F_{11}&F_{12}&\cdots&F_{1n}&\cdots\\ F_{21}&F_{22}&\cdots&F_{2n}&\cdots\\ \cdots&\cdots&\cdots&\cdots&\cdots& \\F_{m1}&F_{m2}&\cdots&F_{mn}&\cdots \\ \cdots&\cdots&\cdots&\cdots&\cdots& \\ \end{bmatrix}\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\\\vdots\end{bmatrix}=\begin{bmatrix}b_1\\b_2\\\vdots\\b_m\\\vdots\end{bmatrix}=\phi(A) [F]ψ(A)= F11F21Fm1F12F22Fm2F1nF2nFmn c1c2cn = b1b2bm =ϕ(A)
\qquad
\qquad 矩阵运算中 b m = ∑ n F m n c n b_m=\sum_nF_{mn}c_n bm=nFmncn,可得到矩阵 F ( A ) F(A) F(A) 的矩阵元为 F m n = ⟨ m ∣ F ^ ∣ n ⟩ F_{mn}=\langle m\vert\hat{F}\vert n\rangle Fmn=mF^n

F ^ ∣ ψ ⟩ = ∣ ϕ ⟩ \hat{F}\vert\psi\rangle=\vert\phi\rangle F^ψ=ϕ 两边左乘 ⟨ m ∣ \langle m\vert m,那么 ⟨ m ∣ F ^ ∣ ψ ⟩ = ⟨ m ∣ ϕ ⟩ \langle m\vert\hat{F}\vert\psi\rangle=\langle m\vert\phi\rangle mF^ψ=mϕ,可以在 ⟨ m ∣ F ^ ∣ ψ ⟩ \langle m\vert\hat{F}\vert\psi\rangle mF^ψ 中插入完备性条件 ∑ n ∣ n ⟩ ⟨ n ∣ = I \sum_n\vert n\rangle\langle n\vert=I nnn=I
 
b m = ⟨ m ∣ ϕ ⟩ = ⟨ m ∣ F ^ ∣ ψ ⟩ = ⟨ m ∣ F ^ ∑ n ∣ n ⟩ ⟨ n ∣ ψ ⟩ = ∑ n ⟨ m ∣ F ^ ∣ n ⟩ c n b_m=\langle m\vert\phi\rangle=\langle m\vert\hat{F}\vert\psi\rangle=\langle m\vert\hat{F}\textcolor{blue}{\sum_n\vert n\rangle\langle n\vert}\psi\rangle=\sum_n\textcolor{brown}{\langle m\vert\hat{F}\vert n\rangle}c_n bm=mϕ=mF^ψ=mF^nnnψ=nmF^ncn,比较可得 F m n = ⟨ m ∣ F ^ ∣ n ⟩ F_{mn}=\langle m\vert\hat{F}\vert n\rangle Fmn=mF^n

\qquad
\qquad 特别地,算符 A ^ \hat{A} A^ 本身在表象 A A A 中的矩阵元为 A m n = ⟨ m ∣ A ^ ∣ n ⟩ = a n ⟨ m ∣ n ⟩ = a n δ m n A_{mn}=\langle m\vert\hat{A}\vert n\rangle=a_n\langle m\vert n\rangle=a_n\delta_{mn} Amn=mA^n=anmn=anδmn,表示成矩阵为:

[ A ] = [ a 1 0 ⋯ 0 ⋯ 0 a 2 ⋯ 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 0 0 ⋯ a m ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ] \qquad\qquad\qquad[A]=\begin{bmatrix}a_1&0&\cdots&0&\cdots\\ 0&a_2&\cdots&0&\cdots\\ \cdots&\cdots&\cdots&\cdots&\cdots& \\0&0&\cdots&a_m&\cdots \\ \cdots&\cdots&\cdots&\cdots&\cdots& \\ \end{bmatrix} [A]= a1000a2000am

矩阵元也可以通过插入两个完备性条件 ∑ m ∣ m ⟩ ⟨ m ∣ = I \sum_m\vert m\rangle\langle m\vert=I mmm=I ∑ n ∣ n ⟩ ⟨ n ∣ = I \sum_n\vert n\rangle\langle n\vert=I nnn=I 来得到,也就是:
 
( 1 ) (1) (1) 算符 F ^ \hat{F} F^ 的矩阵表示 F ( A ) = ∑ m ∣ m ⟩ ⟨ m ∣ F ^ ∑ n ∣ n ⟩ ⟨ n ∣ = ∑ m , n ⟨ m ∣ F ^ ∣ n ⟩ ∣ m ⟩ ⟨ n ∣ F(A)=\sum_m\vert m\rangle\langle m\vert\hat{F}\sum_n\vert n\rangle\langle n\vert=\sum_{m,n}\langle m\vert\hat{F}\vert n\rangle\vert m\rangle\langle n\vert F(A)=mmmF^nnn=m,nmF^nmn
 
( 2 ) (2) (2) 算符 A ^ \hat{A} A^ 本身的矩阵表示 [ A ] = ∑ m , n ⟨ m ∣ A ^ ∣ n ⟩ ∣ m ⟩ ⟨ n ∣ = ∑ m , n a n δ m n ∣ m ⟩ ⟨ n ∣ = ∑ n a n ∣ n ⟩ ⟨ n ∣ [A]=\sum_{m,n}\langle m\vert\hat{A}\vert n\rangle\vert m\rangle\langle n\vert=\sum_{m,n}a_n\delta_{mn}\vert m\rangle\langle n\vert=\sum_na_n\vert n\rangle\langle n\vert [A]=m,nmA^nmn=m,nanδmnmn=nannn

\qquad
\qquad
∙ \quad\bullet\quad 平均值公式及矩阵表示

\qquad 在表象 A A A 中,仍然假设归一化态矢 ∣ ψ ⟩ = ∑ n c n ∣ n ⟩ \vert\psi\rangle=\sum_nc_n\left\vert n\right\rangle ψ=ncnn力学量 A A A 在态 ∣ ψ ⟩ \left\vert\psi\right\rangle ψ 中的期望值 ⟨ A ⟩ = ⟨ ψ ∣ A ^ ∣ ψ ⟩ \langle A\rangle=\langle\psi\vert\hat{A}\vert\psi\rangle A=ψA^ψ

⟨ A ⟩ = ∑ n a n c n ∗ c n = ∑ n a n c n ⟨ ψ ∣ n ⟩ , c n ∗ = ⟨ ψ ∣ n ⟩ = ∑ n ⟨ ψ ∣ c n a n ∣ n ⟩ , A ^ ∣ n ⟩ = a n ∣ n ⟩ = ⟨ ψ ∣ ∑ n c n A ^ ∣ n ⟩ = ⟨ ψ ∣ A ^ ∑ n c n ∣ n ⟩ = ⟨ ψ ∣ A ^ ∣ ψ ⟩ \qquad\qquad\begin{aligned}\langle A\rangle=\displaystyle\sum_{n}a_nc_n^\ast c_n&=\sum_{n}a_n c_n\langle\psi\vert n\rangle,\qquad c_n^\ast=\langle\psi\vert n\rangle\\&=\sum_{n}\langle\psi\vert c_n a_n \vert n\rangle,\qquad \hat{A}\vert n\rangle=a_n\vert n\rangle\\&=\langle\psi\vert\sum_{n}c_n \hat{A}\vert n\rangle\\&=\langle\psi\vert\hat{A}\textcolor{slateblue}{\sum_{n}c_n \vert n\rangle}\\&=\langle\psi\vert\hat{A}\textcolor{slateblue}{\vert\psi\rangle}\end{aligned} A=nancncn=nancnψn,cn=ψn=nψcnann,A^n=ann=ψncnA^n=ψA^ncnn=ψA^ψ

\qquad 由于算符 A ^ \hat{A} A^ 本身在表象 A A A 中的矩阵元为 A m n = ⟨ m ∣ A ^ ∣ n ⟩ = a n δ m n A_{mn}=\langle m\vert\hat{A}\vert n\rangle=a_n\delta_{mn} Amn=mA^n=anδmn,表示成矩阵形式为:

⟨ A ⟩ = ∑ n a n c n ∗ c n = [ c 1 ∗    c 2 ∗   ⋯   c n ∗   ⋯   ] [ a 1 0 ⋯ 0 ⋯ 0 a 2 ⋯ 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 0 0 ⋯ a n ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ] [ c 1 c 2 ⋮ c n ⋮ ] = ψ † ( A ) [ A ] ψ ( A ) \qquad\qquad\begin{aligned}\langle A\rangle=\displaystyle\sum_{n}a_nc_n^\ast c_n&=[c_1^\ast\ \ c_2^\ast\ \cdots\ c_n^\ast\ \cdots]\begin{bmatrix}a_1&0&\cdots&0&\cdots\\ 0&a_2&\cdots&0&\cdots\\ \cdots&\cdots&\cdots&\cdots&\cdots& \\0&0&\cdots&a_n&\cdots \\ \cdots&\cdots&\cdots&\cdots&\cdots& \\ \end{bmatrix}\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\\\vdots\end{bmatrix}\\&=\psi^\dagger(A)[A]\psi(A)\end{aligned} A=nancncn=[c1  c2  cn ] a1000a2000an c1c2cn =ψ(A)[A]ψ(A)

由于 c n ∗ c n = ∣ c n ∣ 2 c_n^\ast c_n=\vert c_n\vert^2 cncn=cn2 表示体系处于量子态 ∣ ψ ⟩ \vert\psi\rangle ψ 时测量力学量 A A A 取值为 a n a_n an 的概率, ⟨ A ⟩ = ∑ n ∣ c n ∣ 2 a n \textcolor{blue}{\langle A\rangle=\sum_n\vert c_n\vert^2 a_n} A=ncn2an 就是求数学期望

\qquad
\qquad 在表象 A A A 中,对于任意力学量算符 F ^ \hat{F} F^,可观测量 F F F 在态 ∣ ψ ⟩ \left\vert\psi\right\rangle ψ 中的期望值仍然为 ⟨ F ⟩ = ⟨ ψ ∣ F ^ ∣ ψ ⟩ \langle F\rangle=\langle\psi\vert\hat{F}\vert\psi\rangle F=ψF^ψ

⟨ F ⟩ = ⟨ ψ ∣ F ^ ∣ ψ ⟩ = ⟨ ψ ∣ ∑ m ∣ m ⟩ ⟨ m ∣ F ^ ∑ n ∣ n ⟩ ⟨ n ∣ ψ ⟩ = ∑ m ⟨ ψ ∣ m ⟩ ⟨ m ∣ F ^ ∑ n ∣ n ⟩ c n = ∑ m , n c m ∗ c n ⟨ m ∣ F ^ ∣ n ⟩ = [ c 1 ∗   ⋯   c n ∗   ⋯   ] [ F ] [ c 1 c 2 ⋮ c n ⋮ ] = ψ † ( A ) F ( A ) ψ ( A ) \qquad\qquad\begin{aligned}\langle F\rangle=\langle\psi\vert\hat{F}\vert\psi\rangle&=\langle\psi\vert\sum_m\vert m\rangle\langle m\vert\hat{F}\sum_n\vert n\rangle\langle n\vert\psi\rangle \\ &= \sum_m \langle\psi\vert m\rangle\langle m\vert\hat{F}\sum_n\vert n\rangle c_n \\ &= \sum_{m,n} c_m^\ast c_n \langle m\vert\hat{F}\vert n\rangle =[c_1^\ast\ \cdots\ c_n^\ast\ \cdots][F]\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\\\vdots\end{bmatrix} \\ &=\psi^\dagger(A)F(A)\psi(A) \end{aligned} F=ψF^ψ=ψmmmF^nnnψ=mψmmF^nncn=m,ncmcnmF^n=[c1  cn ][F] c1c2cn =ψ(A)F(A)ψ(A)

算符 F ^ \hat{F} F^ 所对应矩阵 F ( A ) F(A) F(A) 的矩阵元为 F m n = ⟨ m ∣ F ^ ∣ n ⟩ F_{mn}=\langle m\vert\hat{F}\vert n\rangle Fmn=mF^n

\qquad

7. 表象变换

\qquad 态矢之间的基矢可以有多种选择。

∙ \quad\bullet\quad 假设力学量 A A A 对应的线性厄密算符为 A ^ \hat{A} A^,其正交归一的本征矢 { ψ n } \{\psi_n\} {ψn},满足:

⟨ ψ n ∣ ψ k ⟩ = δ n k ,   ∑ n ∣ ψ n ⟩ ⟨ ψ n ∣ = I ,   ⟨ ψ ∣ ψ ⟩ = 1 \qquad\qquad\qquad\langle\psi_n\vert\psi_k\rangle=\delta_{nk},\ \sum_n\vert\psi_n\rangle\langle\psi_n\vert=I,\ \langle\psi\vert\psi\rangle=1 ψnψk=δnk, nψnψn=I, ψψ=1

\qquad   态矢 ∣ ψ ⟩ \vert\psi\rangle ψ A A A 表象中展开为 ∣ ψ ⟩ = ∑ n ∣ ψ n ⟩ ⟨ ψ n ∣ ψ ⟩ = ∑ n c n ∣ ψ n ⟩ , c n = ⟨ ψ n ∣ ψ ⟩ \vert\psi\rangle=\displaystyle\sum_n\vert\psi_n\rangle\langle\psi_n\vert\psi\rangle=\displaystyle\sum_nc_n\vert\psi_n\rangle,\quad c_n=\langle\psi_n\vert\psi\rangle ψ=nψnψnψ=ncnψn,cn=ψnψ

\qquad   由 { c n } \{c_n\} {cn} 组成的列矢量是态矢 ∣ ψ ⟩ \vert\psi\rangle ψ A A A 表象中的波函数:

ψ ( A ) ≡ [ c 1 c 2 ⋮ c n ⋮ ] , ψ † ( A ) ≡ [ c 1 ∗    c 2 ∗    ⋯    c n ∗    ⋯   ] \qquad\qquad\qquad\psi(A)\equiv\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\\\vdots\end{bmatrix},\quad\psi^\dagger(A)\equiv[c_1^\ast\ \ c_2^\ast\ \ \cdots\ \ c_n^\ast\ \ \cdots] ψ(A) c1c2cn ,ψ(A)[c1  c2    cn  ]

\qquad   任意线性算符 F F F A A A 表象中的矩阵表示为 F ( A ) F(A) F(A),其矩阵元为 F m n = ⟨ ψ m ∣ F ^ ∣ ψ n ⟩ F_{mn}=\langle\psi_m\vert\hat{F}\vert\psi_n\rangle Fmn=ψmF^ψn

\qquad
∙ \quad\bullet\quad 另选一个力学量 R R R 所对应线性厄密算符为 R ^ \hat{R} R^,其正交归一的本征矢 { ϕ ν } \{\phi_{\nu}\} {ϕν},满足:

⟨ ϕ ν ∣ ϕ μ ⟩ = δ ν μ ,   ∑ ν ∣ ϕ ν ⟩ ⟨ ϕ ν ∣ = I ,   ⟨ ψ ∣ ψ ⟩ = 1 \qquad\qquad\qquad\langle\phi_\nu\vert\phi_\mu\rangle=\delta_{\nu\mu},\ \sum_{\nu}\vert\phi_\nu\rangle\langle\phi_\nu\vert=I,\ \langle\psi\vert\psi\rangle=1 ϕνϕμ=δνμ, νϕνϕν=I, ψψ=1

\qquad   态矢 ∣ ψ ⟩ \vert\psi\rangle ψ R R R 表象中展开为: ∣ ψ ⟩ = ∑ ν ∣ ϕ ν ⟩ ⟨ ϕ ν ∣ ψ ⟩ = ∑ ν a ν ∣ ϕ ν ⟩ , a ν = ⟨ ϕ ν ∣ ψ ⟩ \vert\psi\rangle=\displaystyle\sum_{\nu}\vert\phi_\nu\rangle\langle\phi_\nu\vert\psi\rangle=\displaystyle\sum_{\nu}a_{\nu}\vert\phi_\nu\rangle,\quad a_{\nu}=\langle\phi_\nu\vert\psi\rangle ψ=νϕνϕνψ=νaνϕν,aν=ϕνψ

\qquad   由 { a ν } \{a_{\nu}\} {aν} 组成的列矢量就是态矢 ∣ ψ ⟩ \vert\psi\rangle ψ R R R 表象中的波函数:

ψ ( R ) ≡ [ a 1 a 2 ⋮ a ν ⋮ ] , ψ † ( R ) ≡ [ a 1 ∗    a 2 ∗    ⋯    a ν ∗    ⋯   ] \qquad\qquad\qquad\psi(R)\equiv\begin{bmatrix}a_1\\a_2\\\vdots\\a_{\nu}\\\vdots\end{bmatrix},\quad\psi^\dagger(R)\equiv[a_1^\ast\ \ a_2^\ast\ \ \cdots\ \ a_{\nu}^\ast\ \ \cdots] ψ(R) a1a2aν ,ψ(R)[a1  a2    aν  ]

\qquad   任意线性算符 F F F R R R 表象中的矩阵表示为 F ( R ) F(R) F(R),其矩阵元为 F μ ν = ⟨ ϕ μ ∣ F ^ ∣ ϕ ν ⟩ F_{\mu\nu}=\langle\phi_\mu\vert\hat{F}\vert\phi_\nu\rangle Fμν=ϕμF^ϕν

\qquad
∙ \quad\bullet\quad 同一态矢 ∣ ψ ⟩ \vert\psi\rangle ψ A A A R R R 表象之间可通过变换矩阵 S S S 联系起来,即 ψ ( R ) = S ψ ( A ) \textcolor{crimson}{\psi(R)=S\psi(A)} ψ(R)=Sψ(A),表示成矩阵运算为:

[ a 1 a 2 ⋮ a ν ⋮ ] = [ S 11 S 12 ⋯ S 1 n ⋯ S 21 S 22 ⋯ S 2 n ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ S ν 1 S ν 2 ⋯ S ν n ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ] ⏟ [ S ] [ c 1 c 2 ⋮ c n ⋮ ] \qquad\qquad\qquad\begin{bmatrix}a_1\\a_2\\\vdots\\a_{\nu}\\\vdots\end{bmatrix}=\underbrace{\begin{bmatrix}S_{11}&S_{12}&\cdots&S_{1n}&\cdots\\ S_{21}&S_{22}&\cdots&S_{2n}&\cdots\\ \cdots&\cdots&\cdots&\cdots&\cdots& \\S_{\nu1}&S_{\nu2}&\cdots&S_{\nu n}&\cdots \\ \cdots&\cdots&\cdots&\cdots&\cdots& \\ \end{bmatrix}}_{[S]}\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\\\vdots\end{bmatrix} a1a2aν =[S] S11S21Sν1S12S22Sν2S1nS2nSνn c1c2cn ,此处 { a ν = ⟨ ϕ n ∣ ψ ⟩ c n = ⟨ ψ n ∣ ψ ⟩ \begin{cases}a_{\nu}=\langle\phi_n\vert\psi\rangle\\c_n=\langle\psi_n\vert\psi\rangle\end{cases} {aν=ϕnψcn=ψnψ

\qquad 显然有 a ν = ∑ n S ν n c n a_{\nu}=\displaystyle\sum_{n}S_{\nu n}c_n aν=nSνncn,又由于 ⟨ ϕ ν ∣ = ∑ n ⟨ ϕ ν ∣ ψ n ⟩ ⟨ ψ n ∣ \langle\phi_\nu\vert=\displaystyle\sum_{n}\langle\phi_\nu\vert\psi_n\rangle\langle\psi_n\vert ϕν=nϕνψnψn,可得到

{ a ν = ∑ n S ν n c n ⟹ ⟨ ϕ ν ∣ ψ ⟩ = ∑ n S ν n ⟨ ψ n ∣ ψ ⟩ ⟨ ϕ ν ∣ = ∑ n ⟨ ϕ ν ∣ ψ n ⟩ ⟨ ψ n ∣ ⟹ ⟨ ϕ ν ∣ ψ ⟩ = ∑ n ⟨ ϕ ν ∣ ψ n ⟩ ⟨ ψ n ∣ ψ ⟩ \qquad\qquad\qquad\begin{cases} a_{\nu}=\displaystyle\sum_{n}S_{\nu n}c_n&\Longrightarrow\quad\langle\phi_\nu\vert\psi\rangle=\displaystyle\sum_nS_{\nu n}\langle\psi_n\vert\psi\rangle \\ \langle\phi_\nu\vert=\displaystyle\sum_{n}\langle\phi_\nu\vert\psi_n\rangle\langle\psi_n\vert&\Longrightarrow\quad\langle\phi_\nu\vert\psi\rangle=\displaystyle\sum_{n}\langle\phi_\nu\vert\psi_n\rangle\langle\psi_n\vert\psi\rangle \end{cases} aν=nSνncnϕν=nϕνψnψnϕνψ=nSνnψnψϕνψ=nϕνψnψnψ

\qquad 对比可得到 S ν n = ⟨ ϕ ν ∣ ψ n ⟩ \textcolor{crimson}{S_{\nu n}=\langle\phi_\nu\vert\psi_n\rangle} Sνn=ϕνψn

变换矩阵 S S S 完全由基矢 { ψ n } \{\psi_n\} {ψn} { ϕ ν } \{\phi_{\nu}\} {ϕν} 的相互关系决定,而与态矢 ∣ ψ ⟩ \vert\psi\rangle ψ 无关。

\qquad 变换矩阵 S S S 的厄密共轭矩阵 S † S^\dagger S 的矩阵元为 S n ν † = ( S ν n ) ∗ = ⟨ ϕ ν ∣ ψ n ⟩ ∗ = ⟨ ψ n ∣ ϕ ν ⟩ \textcolor{crimson}{S_{n\nu}^\dagger=}(S_{\nu n})^\ast=\langle\phi_\nu\vert\psi_n\rangle^\ast=\textcolor{crimson}{\langle\psi_n\vert\phi_\nu\rangle} Snν=(Sνn)=ϕνψn=ψnϕν,可得到:

{ [ S † S ] n m = ∑ ν S n ν † S ν m = ∑ ν ⟨ ψ n ∣ ϕ ν ⟩ ⟨ ϕ ν ∣ ψ m ⟩ = ⟨ ψ n ∣ ψ m ⟩ = δ n m [ S S † ] ν μ = ∑ n S ν n S n μ † = ∑ n ⟨ ϕ ν ∣ ψ n ⟩ ⟨ ψ n ∣ ϕ μ ⟩ = ⟨ ϕ ν ∣ ϕ μ ⟩ = δ ν μ \qquad\qquad\qquad\begin{cases}[S^\dagger S]_{nm}=\displaystyle\sum_{\nu}S_{n\nu}^\dagger S_{\nu m}=\sum_{\nu}\langle\psi_n\vert\phi_\nu\rangle\langle\phi_\nu\vert\psi_m\rangle=\langle\psi_n\vert\psi_m\rangle=\delta_{nm} \\ \\ [SS^\dagger]_{\nu\mu}=\displaystyle\sum_{n}S_{\nu n}S_{n\mu}^\dagger =\sum_{n}\langle\phi_\nu\vert\psi_n\rangle\langle\psi_n\vert\phi_\mu\rangle=\langle\phi_\nu\vert\phi_\mu\rangle=\delta_{\nu\mu} \end{cases} [SS]nm=νSnνSνm=νψnϕνϕνψm=ψnψm=δnm[SS]νμ=nSνnSnμ=nϕνψnψnϕμ=ϕνϕμ=δνμ

\qquad 因此, S S † = S † S = I SS^\dagger=S^\dagger S=I SS=SS=I 都是单位矩阵(恒等算符),并且将 S S S S † S^\dagger S 称为幺正矩阵 (unitary matrix) \text{(unitary\ matrix)} (unitary matrix)

\qquad
结论1:若有表象之间的变换关系 ψ ( R ) = S ψ ( A ) \psi(R)=S\psi(A) ψ(R)=Sψ(A),那么存在以下关系:

ψ ( R ) = S ψ ( A ) ⟹ ψ ( A ) = S † ψ ( R ) \qquad\qquad\qquad\textcolor{crimson}{\psi(R)=S\psi(A)}\qquad\Longrightarrow\quad\textcolor{crimson}{\psi(A)=S^\dagger\psi(R)} ψ(R)=Sψ(A)ψ(A)=Sψ(R)   (两边左乘 S † S^\dagger S
ψ † ( R ) = ψ † ( A ) S † ⟹ ψ † ( A ) = ψ † ( R ) S \qquad\qquad\qquad\textcolor{crimson}{\psi^\dagger(R)=\psi^\dagger(A)S^\dagger}\quad\Longrightarrow\quad\textcolor{crimson}{\psi^\dagger(A)=\psi^\dagger(R)S} ψ(R)=ψ(A)Sψ(A)=ψ(R)S  (两边右乘 S S S

表象的幺正变换实际上就是线性代数中“正交变换”概念,幺正矩阵就是(互相正交的特征向量作为列矢量的)正交矩阵

\qquad
结论2:任意线性算符 F ^ \hat{F} F^ A A A 表象中的矩阵表示为 F ( A ) F(A) F(A),矩阵元为 F m n = ⟨ ψ m ∣ F ^ ∣ ψ n ⟩ F_{mn}=\langle\psi_m\vert\hat{F}\vert\psi_n\rangle Fmn=ψmF^ψn;在 R R R 表象中的矩阵表示为 F ( R ) F(R) F(R),矩阵元为 F μ ν = ⟨ ϕ μ ∣ F ^ ∣ ϕ ν ⟩ F_{\mu\nu}=\langle\phi_\mu\vert\hat{F}\vert\phi_\nu\rangle Fμν=ϕμF^ϕν
\qquad
\qquad 根据 { S ν n = ⟨ ϕ ν ∣ ψ n ⟩ S n ν † = ⟨ ψ n ∣ ϕ ν ⟩ \begin{cases}\textcolor{crimson}{S_{\nu n}=\langle\phi_\nu\vert\psi_n\rangle} \\ \textcolor{crimson}{S_{n\nu}^\dagger=\langle\psi_n\vert\phi_\nu\rangle} \end{cases} {Sνn=ϕνψnSnν=ψnϕν,可得到: F ( R ) = S F ( A ) S † \textcolor{crimson}{F(R)=SF(A)S^\dagger} F(R)=SF(A)S F ( A ) = S † F ( R ) S \textcolor{crimson}{F(A)=S^\dagger F(R)S} F(A)=SF(R)S

此处的矩阵乘法 F ( R ) = S F ( A ) S † F(R)=SF(A)S^\dagger F(R)=SF(A)S 相当于矩阵元的计算:
 
F μ ν = ⟨ ϕ μ ∣ F ^ ∣ ϕ ν ⟩ = ⟨ ϕ μ ∣ ∑ n ∣ ψ n ⟩ ⟨ ψ n ∣ F ^ ∑ m ∣ ψ m ⟩ ⟨ ψ m ∣ ∣ ϕ ν ⟩ = ∑ n ∑ m S μ n ⟨ ψ n ∣ F ^ ∣ ψ m ⟩ S m ν † = ∑ n ∑ m S μ n F n m S m ν † \qquad\begin{aligned}F_{\mu\nu}=\langle\phi_\mu\vert\hat{F}\vert\phi_\nu\rangle&=\langle\phi_\mu\vert\sum_n\vert\psi_n\rangle\langle\psi_n\vert\hat{F}\sum_m\vert\psi_m\rangle\langle\psi_m\vert\vert\phi_\nu\rangle\\&=\sum_n\sum_mS_{\mu n}\langle\psi_n\vert\hat{F}\vert\psi_m\rangle S_{m\nu}^\dagger \\&=\sum_n\sum_mS_{\mu n}F_{nm}S_{m\nu}^\dagger \end{aligned} Fμν=ϕμF^ϕν=ϕμnψnψnF^mψmψm∣∣ϕν=nmSμnψnF^ψmSmν=nmSμnFnmSmν

\qquad
结论3:表象变换时,态矢和算符的具体矩阵表示与所选择的表象有关,但它们描述的物理内容不受表象选择的影响
( 1 ) \qquad(1) (1) 态矢的模方不变
⟨ ψ ∣ ψ ⟩ = ψ † ( A ) ψ ( A ) = ψ † ( R ) S S † ψ ( R ) = ψ † ( R ) ψ ( R ) \qquad\qquad\langle\psi\vert\psi\rangle=\psi^\dagger(A)\psi(A)=\psi^\dagger(R)SS^\dagger\psi(R)=\psi^\dagger(R)\psi(R) ψψ=ψ(A)ψ(A)=ψ(R)SSψ(R)=ψ(R)ψ(R)
⟨ ψ ∣ ϕ ⟩ = ψ † ( A ) ϕ ( A ) = ψ † ( R ) S S † ϕ ( R ) = ψ † ( R ) ϕ ( R ) \qquad\qquad\langle\psi\vert\phi\rangle=\psi^\dagger(A)\phi(A)=\psi^\dagger(R)SS^\dagger\phi(R)=\psi^\dagger(R)\phi(R) ψϕ=ψ(A)ϕ(A)=ψ(R)SSϕ(R)=ψ(R)ϕ(R)

( 2 ) \qquad(2) (2)力学量算符的本征值与表象选择无关
F ( A ) ψ λ ( A ) = λ ψ λ ( A )    →    S † F ( R ) S S † ψ λ ( R ) = λ S † ψ λ ( R ) →   F ( R ) ψ λ ( R ) = λ ψ λ ( R ) \qquad\qquad\textcolor{royalblue}{F(A)\psi_\lambda(A)=\lambda\psi_\lambda(A)}\ \ \to\ \ S^\dagger F(R)SS^\dagger\psi_\lambda(R)=\lambda S^\dagger\psi_\lambda(R)\newline\qquad\qquad\to\ \textcolor{royalblue}{F(R)\psi_\lambda(R)=\lambda\psi_\lambda(R)} F(A)ψλ(A)=λψλ(A)    SF(R)SSψλ(R)=λSψλ(R) F(R)ψλ(R)=λψλ(R)

( 3 ) \qquad(3) (3)平均值公式不变 ⟨ F ⟩ = ⟨ ψ ∣ F ^ ∣ ψ ⟩ \langle F\rangle=\langle\psi\vert\hat{F}\vert\psi\rangle F=ψF^ψ
⟨ F ⟩ = ⟨ ψ ∣ F ^ ∣ ψ ⟩ = ψ † ( A ) F ( A ) ψ ( A ) = ψ † ( R ) S S † F ( R ) S S † ψ ( R ) →   ⟨ F ⟩ = ψ † ( R ) F ( R ) ψ ( R ) \qquad\qquad\langle F\rangle=\langle\psi\vert\hat{F}\vert\psi\rangle=\textcolor{royalblue}{\psi^\dagger(A)F(A)\psi(A)}=\psi^\dagger(R)SS^\dagger F(R)SS^\dagger\psi(R)\newline\qquad\qquad\to\ \langle F\rangle=\textcolor{royalblue}{\psi^\dagger(R)F(R)\psi(R)} F=ψF^ψ=ψ(A)F(A)ψ(A)=ψ(R)SSF(R)SSψ(R) F=ψ(R)F(R)ψ(R)

( 4 ) \qquad(4) (4)算符之间的相互关系不变
\qquad\qquad F ^ = P ^ Q ^ \hat{F}=\hat{P}\hat{Q} F^=P^Q^,那么 F ( A ) = P ( A ) Q ( A ) = P ( R ) Q ( R ) = F ( R ) F(A)=P(A)Q(A)=P(R)Q(R)=F(R) F(A)=P(A)Q(A)=P(R)Q(R)=F(R)

\qquad
主要参考书籍
[1] Griffith. 量子力学概论
[2] 钱伯初. 量子力学
[3] 周世勋. 量子力学教程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值