5. 量子体系状态、算符与可观测量、表象
∙
\quad\bullet
∙ 量子体系状态
\qquad
\qquad
量子体系的状态用一个态矢量
∣
ψ
⟩
\vert\psi\rangle
∣ψ⟩ 描述,态矢量满足线性叠加性(即态叠加原理):
∣
ψ
⟩
=
c
1
∣
ψ
2
⟩
+
c
2
∣
ψ
2
⟩
∣
ψ
⟩
=
∑
n
c
n
∣
ψ
n
⟩
\qquad\qquad\begin{aligned}\vert\psi\rangle&=c_1\vert\psi_2\rangle+c_2\vert\psi_2\rangle \\ \vert\psi\rangle&=\sum_n c_n\vert\psi_n\rangle \end{aligned}
∣ψ⟩∣ψ⟩=c1∣ψ2⟩+c2∣ψ2⟩=n∑cn∣ψn⟩
\qquad
右矢
(ket)
\text{(ket)}
(ket)的厄密共轭
(H.c.)
\text{(H.c.)}
(H.c.)定义为左矢
(bra)
\text{(bra)}
(bra),记为:
⟨
ψ
∣
=
(
∣
ψ
⟩
)
†
\langle\psi\vert=(\vert\psi\rangle)^\dagger
⟨ψ∣=(∣ψ⟩)†,并有:
(
1
)
\qquad(1)
(1) 态矢
∣
ψ
⟩
\vert\psi\rangle
∣ψ⟩ 和
∣
φ
⟩
\vert\varphi\rangle
∣φ⟩ 的内积,记为:
⟨
ψ
∥
φ
⟩
≡
⟨
ψ
∣
φ
⟩
\langle\psi\Vert\varphi\rangle\equiv\langle\psi\vert\varphi\rangle
⟨ψ∥φ⟩≡⟨ψ∣φ⟩
(
2
)
\qquad(2)
(2) 态矢
∣
ψ
⟩
\vert\psi\rangle
∣ψ⟩ 和
∣
φ
⟩
\vert\varphi\rangle
∣φ⟩ 的正交性,记为:
⟨
ψ
∣
φ
⟩
=
0
\langle\psi\vert\varphi\rangle=0
⟨ψ∣φ⟩=0
(
3
)
\qquad(3)
(3) 态矢
∣
ψ
⟩
\vert\psi\rangle
∣ψ⟩的归一性,记为:
⟨
ψ
∣
ψ
⟩
=
1
\langle\psi\vert\psi\rangle=1
⟨ψ∣ψ⟩=1
\qquad
∙
\quad\bullet
∙ 算符与可观测量
(Observable)
\text{(Observable)}
(Observable)
\qquad
\qquad
在量子力学中,用算符来表示微观粒子的力学量。对一个可观测的力学量进行测量,其结果都是实数。因此,与可观测量相对应的算符都是厄密算符。
\qquad
把一个一般的力学量
A
A
A(比如位置、动量、角动量、能量)所对应的厄密算符写成
A
^
\hat{A}
A^,则有本征方程
A
^
∣
ψ
n
⟩
=
a
n
∣
ψ
n
⟩
\hat{A}\vert\psi_n\rangle=a_n\vert\psi_n\rangle
A^∣ψn⟩=an∣ψn⟩,其中
a
n
a_n
an 为本征值,
∣
ψ
n
⟩
\vert\psi_n\rangle
∣ψn⟩ 为本征矢量。
(
1
)
\qquad(1)
(1) 本征值是实数:
a
n
=
a
n
∗
a_n=a_n^\ast
an=an∗,此处为复数共轭
(C.c.)
\text{(C.c.)}
(C.c.)
(
2
)
\qquad(2)
(2) 属于不同本征值的本征矢相互正交:
⟨
ψ
n
∣
ψ
m
⟩
=
0
\langle\psi_n\vert\psi_m\rangle=0
⟨ψn∣ψm⟩=0
(
3
)
\qquad(3)
(3) 本征矢的完备性条件:
∑
n
∣
ψ
n
⟩
⟨
ψ
n
∣
=
I
\sum_n\vert\psi_n\rangle\langle\psi_n\vert=I
∑n∣ψn⟩⟨ψn∣=I
⇒ \qquad\Rightarrow ⇒ 由完备性条件,任意态矢 ∣ ψ ⟩ \vert\psi\rangle ∣ψ⟩ 可由算符的本征矢展开为:
∣
ψ
⟩
=
∑
n
∣
ψ
n
⟩
⟨
ψ
n
∣
ψ
⟩
=
∑
n
c
n
∣
ψ
n
⟩
,
c
n
=
⟨
ψ
n
∣
ψ
⟩
\qquad\qquad\qquad\vert\psi\rangle=\displaystyle\sum_n\vert\psi_n\rangle\langle\psi_n\vert\psi\rangle=\displaystyle\sum_nc_n\vert\psi_n\rangle,\quad c_n=\langle\psi_n\vert\psi\rangle
∣ψ⟩=n∑∣ψn⟩⟨ψn∣ψ⟩=n∑cn∣ψn⟩,cn=⟨ψn∣ψ⟩
\qquad
⇒
\qquad\Rightarrow
⇒ 若态矢
∣
ψ
⟩
\vert\psi\rangle
∣ψ⟩ 已经归一化,则
⟨
ψ
∣
ψ
⟩
=
∑
m
∑
n
c
m
∗
c
n
⟨
m
∣
n
⟩
=
∑
m
∑
n
c
m
∗
c
n
δ
m
n
=
∑
n
c
n
∗
c
n
=
∑
n
∣
c
n
∣
2
=
1
\qquad\qquad\qquad\langle\psi\vert\psi\rangle=\displaystyle\sum_m\sum_nc_m^\ast c_n\langle m\vert n\rangle=\sum_m\sum_nc_m^\ast c_n\delta_{mn}=\sum_nc_n^\ast c_n=\sum_n\vert c_n\vert^2=1
⟨ψ∣ψ⟩=m∑n∑cm∗cn⟨m∣n⟩=m∑n∑cm∗cnδmn=n∑cn∗cn=n∑∣cn∣2=1
\qquad
其中,
c
n
∗
c
n
=
∣
c
n
∣
2
c_n^\ast c_n=\vert c_n\vert^2
cn∗cn=∣cn∣2 表示当量子体系处于量子态
∣
ψ
⟩
\vert\psi\rangle
∣ψ⟩ 时,测量力学量
A
A
A 取值为
a
n
a_n
an 的概率。
\qquad
⇒
\qquad\Rightarrow
⇒ 力学量
A
A
A 在态
∣
ψ
⟩
\left\vert\psi\right\rangle
∣ψ⟩ 中的期望值为
⟨
A
⟩
=
⟨
ψ
∣
A
^
∣
ψ
⟩
\langle A\rangle=\langle\psi\vert\hat{A}\vert\psi\rangle
⟨A⟩=⟨ψ∣A^∣ψ⟩
在全同体系组成的系综中,每个体系都处于相同的 ∣ ψ ⟩ \vert\psi\rangle ∣ψ⟩ 态,每次测量都可能会得到不同结果。期望值就是对含有相同体系的系综中不同体系的重复测量的平均值。
期望值不是对同一个体系的重复测量,对同一个体系进行重复测量会导致波函数的坍缩。
\qquad
\qquad
因此,力学量算符的本征值就是力学量的实际可能值,实验测量只能测得本征值。
( 1 ) \qquad(1) (1) 若系统处于力学量算符 A ^ \hat{A} A^ 的本征态 ∣ ψ n ⟩ \vert\psi_n\rangle ∣ψn⟩ ,则测量力学量 A A A 得到相应的本征值 a n a_n an ,测量后系统仍处于本征态 ∣ ψ n ⟩ \vert\psi_n\rangle ∣ψn⟩ ,这种情况下的测量结果是完全确定的,没有随机性。
( 2 ) \qquad(2) (2) 若系统处于线性叠加态 ∣ ψ ⟩ = ∑ n c n ∣ ψ n ⟩ \vert\psi\rangle=\sum_nc_n\vert\psi_n\rangle ∣ψ⟩=∑ncn∣ψn⟩,则测量力学量 A A A 时以概率 ∣ c n ∣ 2 \vert c_n\vert^2 ∣cn∣2 得到本征值 a n a_n an,若测量得到了本征值 a n a_n an,则测量后系统坍缩到相应的本征态 ∣ ψ n ⟩ \vert\psi_n\rangle ∣ψn⟩,再次测量均为本征值 a n a_n an,也就是由于测量导致了波函数的坍缩 (collapse) \text{(collapse)} (collapse)。
采用一般的写法: A ^ ψ n = a n ψ n \hat{A}\psi_n=a_n\psi_n A^ψn=anψn,其解为: { ψ = ψ 1 , ψ 2 , ⋯ , ψ n , ⋯ a = a 1 , a 2 , ⋯ , a n , ⋯ \begin{cases}\psi=\psi_1,\psi_2,\cdots,\psi_n,\cdots\\ a=a_1,a_2,\cdots,a_n,\cdots\end{cases} {ψ=ψ1,ψ2,⋯,ψn,⋯a=a1,a2,⋯,an,⋯
(1)如果粒子刚好处于某个本征态 ψ n \psi_n ψn,则力学量的取值就是相应的本征值 a n a_n an
(2)如果粒子处于线性叠加态 ψ = ∑ n c n ψ n \psi=\sum_nc_n\psi_n ψ=∑ncnψn,则测量力学量会以概率 ∣ c n ∣ 2 \vert c_n\vert^2 ∣cn∣2 得到本征值 a n a_n an
若要求任何状态的波函数 ψ \psi ψ 能够表示成 ψ = ∑ n c n ψ n \psi=\sum_nc_n\psi_n ψ=∑ncnψn,则 ψ 1 , ψ 2 , ⋯ , ψ n , ⋯ \psi_1,\psi_2,\cdots,\psi_n,\cdots ψ1,ψ2,⋯,ψn,⋯ 必须是完备函数系(也称完全系)。这就要求力学量算符 A ^ \hat{A} A^ 必须是厄密算符,因为厄米算符(对应于不同特征值)的本征函数是相互正交的。满足这个条件的算符所代表的力学量,就称为可观测量 (Observable) \text{(Observable)} (Observable)。
\qquad
∙
\quad\bullet
∙ 表象
(representation)
\text{(representation)}
(representation)
\qquad 表象的引入从某一力学量算符出发。
离散表象
\qquad
\qquad
假设某一力学量算符
A
^
\hat{A}
A^ 的本征方程为
A
^
∣
ψ
n
⟩
=
a
n
∣
ψ
n
⟩
\hat{A}\vert\psi_n\rangle=a_n\vert\psi_n\rangle
A^∣ψn⟩=an∣ψn⟩,将
A
^
\hat{A}
A^ 的正交归一的本征态
{
∣
ψ
n
⟩
}
\{\vert\psi_n\rangle\}
{∣ψn⟩} 简记为
{
∣
n
⟩
}
\{\vert n\rangle\}
{∣n⟩}。
\qquad 以 { ∣ n ⟩ } \{\vert n\rangle\} {∣n⟩} 作为基矢,就可张起一个完备的矢量空间(希尔伯特空间),用该空间中的基矢 { ∣ n ⟩ } \{\vert n\rangle\} {∣n⟩} 来表示其他量子态与力学量算符,称为 A A A 表象。
\qquad 在离散表象 A A A 中,任意态矢 ∣ ψ ⟩ \vert\psi\rangle ∣ψ⟩ 可由基矢 { ∣ n ⟩ } \{\vert n\rangle\} {∣n⟩} 的线性叠加 ∣ ψ ⟩ = ∑ n c n ∣ n ⟩ \vert\psi\rangle=\sum_nc_n\left\vert n\right\rangle ∣ψ⟩=∑ncn∣n⟩ 构成,系数 c n = ⟨ n ∣ ψ ⟩ c_n=\langle n\vert\psi\rangle cn=⟨n∣ψ⟩ 为态矢 ∣ ψ ⟩ \left\vert\psi\right\rangle ∣ψ⟩ 在基矢 ∣ n ⟩ \vert n\rangle ∣n⟩ 上的投影,满足归一化条件 ∑ n ∣ c n ∣ 2 = 1 \sum_n\vert c_n\vert^2=1 ∑n∣cn∣2=1 。由于作为基矢的 { ∣ n ⟩ } \{\vert n\rangle\} {∣n⟩} 是已知的,知道了 { c n } \{c_n\} {cn} 就知道了 ∣ ψ ⟩ \vert\psi\rangle ∣ψ⟩。
\qquad 将 c n c_n cn 排成列矢量,就表示态矢 ∣ ψ ⟩ \vert\psi\rangle ∣ψ⟩ 在(离散)表象 A A A 中的“波函数” ψ ( A ) \psi(A) ψ(A):
ψ ( A ) ≡ [ ⟨ 1 ∣ ψ ⟩ ⟨ 2 ∣ ψ ⟩ ⋮ ⟨ n ∣ ψ ⟩ ⋮ ] = [ c 1 c 2 ⋮ c n ⋮ ] , ψ † ( A ) ≡ [ ⟨ ψ ∣ 1 ⟩ ⟨ ψ ∣ 2 ⟩ ⋯ ⟨ ψ ∣ n ⟩ ⋯ ] = [ c 1 ∗ c 2 ∗ ⋯ c n ∗ ⋯ ] \qquad\qquad\psi(A)\equiv\begin{bmatrix}\langle 1\vert\psi\rangle\\\langle 2\vert\psi\rangle\\\vdots\\\langle n\vert\psi\rangle\\\vdots\end{bmatrix}=\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\\\vdots\end{bmatrix},\quad\psi^\dagger(A)\equiv[\langle\psi\vert1\rangle\ \ \langle\psi\vert2\rangle\ \ \cdots\ \ \langle\psi\vert n\rangle\ \ \cdots]=[c_1^\ast\ \ c_2^\ast\ \ \cdots\ \ c_n^\ast\ \ \cdots] ψ(A)≡ ⟨1∣ψ⟩⟨2∣ψ⟩⋮⟨n∣ψ⟩⋮ = c1c2⋮cn⋮ ,ψ†(A)≡[⟨ψ∣1⟩ ⟨ψ∣2⟩ ⋯ ⟨ψ∣n⟩ ⋯]=[c1∗ c2∗ ⋯ cn∗ ⋯]
ψ ( A ) \psi(A) ψ(A) 为态矢 ∣ ψ ⟩ \vert\psi\rangle ∣ψ⟩ 在表象 A A A 中“波函数”。
ψ ( A ) \psi(A) ψ(A) 是列矢量,是态矢 ∣ ψ ⟩ \vert\psi\rangle ∣ψ⟩ 在表象 A A A 中的矩阵表示; ψ † ( A ) \psi^\dagger(A) ψ†(A) 是行矢量,是 ⟨ ψ ∣ \langle\psi\vert ⟨ψ∣ 在表象 A A A 中的矩阵表示。
\qquad 一个微观量子态用抽象的态矢 ∣ ψ ⟩ \vert\psi\rangle ∣ψ⟩ 描述,与表象无关;态矢 ∣ ψ ⟩ \vert\psi\rangle ∣ψ⟩ 在某表象基矢上的投影,就是态矢 ∣ ψ ⟩ \vert\psi\rangle ∣ψ⟩ 在该表象的波函数。使用狄拉克符号可以使得“态矢”与“波函数”区分开来。
同一个态 ∣ ψ ⟩ \vert\psi\rangle ∣ψ⟩ 在不同的表象中用“波函数”来描写。所选取的表象不同,波函数的形式也不同,但它们描写的是同一个量子态
(1)选取一个特定的表象 A A A,就相当于选取了一个特定的坐标系,该坐标系由表象 A A A 的本征矢 { ∣ n ⟩ } \{\vert n\rangle\} {∣n⟩} 作为基矢
(2)波函数中的 c 1 , c 2 , ⋯ , c n , ⋯ c_1,c_2,\cdots,c_n,\cdots c1,c2,⋯,cn,⋯ 是态矢 ∣ ψ ⟩ \vert\psi\rangle ∣ψ⟩ 在表象 A A A 中沿各基矢 ∣ n ⟩ \vert n\rangle ∣n⟩ 方向的“分量”
\qquad
连续表象
\qquad 以一维运动为例,粒子的位置算符记为 x ^ \hat{x} x^,其本征值为 x , x ′ , x ′ ′ , ⋯ x,x^\prime,x^{\prime\prime},\cdots x,x′,x′′,⋯,相应的本征矢记为 ∣ x ⟩ , ∣ x ′ ⟩ , ∣ x ′ ′ ⟩ , ⋯ \vert x\rangle,\vert x^\prime\rangle,\vert x^{\prime\prime}\rangle,\cdots ∣x⟩,∣x′⟩,∣x′′⟩,⋯,满足本征方程:
x ^ ∣ x ⟩ = x ∣ x ⟩ , x ^ ∣ x ′ ⟩ = x ′ ∣ x ′ ⟩ \qquad\qquad\qquad\hat{x}\vert x\rangle=x\vert x\rangle,\qquad\hat{x}\vert x^\prime\rangle=x^\prime\vert x^\prime\rangle x^∣x⟩=x∣x⟩,x^∣x′⟩=x′∣x′⟩
\qquad 由于本征值可以连续变化,因此 x x x 表象是连续表象。
\qquad
连续变量
x
x
x 表象中:
(
1
)
\qquad(1)
(1) 完备性条件为
∫
d
x
∣
x
⟩
⟨
x
∣
=
I
\displaystyle\int\mathrm{d}x\vert x\rangle\langle x\vert=I
∫dx∣x⟩⟨x∣=I。
\qquad
任意态矢
∣
ψ
⟩
\vert\psi\rangle
∣ψ⟩ 可以展开为:
∣
ψ
⟩
=
∫
d
x
∣
x
⟩
⟨
x
∣
ψ
⟩
=
∫
d
x
∣
x
⟩
ψ
(
x
)
\vert\psi\rangle=\displaystyle\int\mathrm{d}x\vert x\rangle\langle x\vert\psi\rangle=\displaystyle\int\mathrm{d}x\vert x\rangle\psi(x)
∣ψ⟩=∫dx∣x⟩⟨x∣ψ⟩=∫dx∣x⟩ψ(x)
\qquad
其中
ψ
(
x
)
=
⟨
x
∣
ψ
⟩
\psi(x)=\langle x\vert\psi\rangle
ψ(x)=⟨x∣ψ⟩ 是态矢
∣
ψ
⟩
\vert\psi\rangle
∣ψ⟩ 在
x
x
x 表象中的波函数。
( 2 ) \qquad(2) (2) 正交性为 ⟨ x ∣ x ′ ⟩ = δ ( x − x ′ ) \langle x\vert x^\prime\rangle=\delta(x-x^\prime) ⟨x∣x′⟩=δ(x−x′)
( 3 ) \qquad(3) (3) 归一化条件 ⟨ ψ ∣ ψ ⟩ = 1 \langle\psi\vert\psi\rangle=1 ⟨ψ∣ψ⟩=1
⟨
ψ
∣
ψ
⟩
=
⟨
ψ
∣
∫
d
x
∣
x
⟩
⟨
x
∣
ψ
⟩
=
∫
d
x
⟨
ψ
∣
x
⟩
⟨
x
∣
ψ
⟩
=
∫
d
x
ψ
∗
(
x
)
ψ
(
x
)
=
∫
d
x
∣
ψ
(
x
)
∣
2
=
1
\qquad\qquad\qquad\begin{aligned}\langle\psi\vert\psi\rangle&=\langle\psi\vert\int\mathrm{d}x\vert x\rangle\langle x\vert\psi\rangle \\ &=\int\mathrm{d}x\langle\psi\vert x\rangle\langle x\vert\psi\rangle \\ &=\int\mathrm{d}x\psi^\ast(x)\psi(x) \\&=\int\mathrm{d}x\vert\psi(x)\vert^2=1 \end{aligned}
⟨ψ∣ψ⟩=⟨ψ∣∫dx∣x⟩⟨x∣ψ⟩=∫dx⟨ψ∣x⟩⟨x∣ψ⟩=∫dxψ∗(x)ψ(x)=∫dx∣ψ(x)∣2=1
\qquad
其中,
∣
ψ
(
x
)
∣
2
\vert\psi(x)\vert^2
∣ψ(x)∣2 为概率密度,
ψ
∗
(
x
)
ψ
(
x
)
d
x
\psi^\ast(x)\psi(x)\mathrm{d}x
ψ∗(x)ψ(x)dx 表示体系处于量子态
∣
ψ
⟩
\vert\psi\rangle
∣ψ⟩ 时
x
^
\hat{x}
x^ 的本征值在
(
x
,
x
+
d
x
)
(x,x+\mathrm{d}x)
(x,x+dx) 之间的的概率。
常用的连续表象有:坐标表象、动量表象
常用的离散表象有:能量表象、角动量表象
\qquad
6. 量子力学的矩阵表示
\qquad 选定某一个力学量 A A A,代表它的线性厄密算符 A ^ \hat{A} A^ 的本征方程为 A ^ ∣ n ⟩ = a n ∣ n ⟩ \hat{A}\vert n\rangle=a_n\vert n\rangle A^∣n⟩=an∣n⟩,算符 A ^ \hat{A} A^ 的正交归一的本征态为 { ∣ n ⟩ } \{\vert n\rangle\} {∣n⟩},特征值为 a n a_n an,即包含如下关系:
{ A ^ ∣ n ⟩ = a n ∣ n ⟩ , ⟨ n ∣ A ^ † = ⟨ n ∣ a n ∣ ψ ⟩ = ∑ n c n ∣ n ⟩ , c n = ⟨ n ∣ ψ ⟩ , c n ∗ = ⟨ ψ ∣ n ⟩ ⟨ n ∣ k ⟩ = δ n k ∑ n ∣ n ⟩ ⟨ n ∣ = I ⟨ ψ ∣ ψ ⟩ = 1 \qquad\qquad\qquad\begin{cases}\hat{A}\vert n\rangle=a_n\vert n\rangle,\qquad\langle n\vert\hat{A}^\dagger=\langle n\vert a_n \\ \vert\psi\rangle=\sum_nc_n\left\vert n\right\rangle,\quad c_n=\langle n\vert\psi\rangle,\quad c_n^\ast=\langle\psi\vert n\rangle \\ \langle n\vert k\rangle=\delta_{nk} \\ \sum_n\vert n\rangle\langle n\vert=I \\ \langle\psi\vert\psi\rangle=1 \end{cases} ⎩ ⎨ ⎧A^∣n⟩=an∣n⟩,⟨n∣A^†=⟨n∣an∣ψ⟩=∑ncn∣n⟩,cn=⟨n∣ψ⟩,cn∗=⟨ψ∣n⟩⟨n∣k⟩=δnk∑n∣n⟩⟨n∣=I⟨ψ∣ψ⟩=1
\qquad
∙
\quad\bullet\quad
∙线性算符的矩阵表示
\qquad
\qquad
假设任意力学量算符
F
^
\hat{F}
F^ 作用于归一化的态矢
∣
ψ
⟩
\vert\psi\rangle
∣ψ⟩ 后变成了态矢
∣
ϕ
⟩
\vert\phi\rangle
∣ϕ⟩,即
F
^
∣
ψ
⟩
=
∣
ϕ
⟩
\hat{F}\vert\psi\rangle=\vert\phi\rangle
F^∣ψ⟩=∣ϕ⟩。令态矢
∣
ψ
⟩
\vert\psi\rangle
∣ψ⟩ 在表象
A
A
A 中的波函数为
ψ
(
A
)
\psi(A)
ψ(A),态矢
∣
ϕ
⟩
\vert\phi\rangle
∣ϕ⟩ 在表象
A
A
A 中的波函数为
ϕ
(
A
)
\phi(A)
ϕ(A),也就是
∣ ψ ⟩ = ∑ n c n ∣ n ⟩ , ψ ( A ) ≡ [ ⟨ 1 ∣ ψ ⟩ ⟨ 2 ∣ ψ ⟩ ⋮ ⟨ n ∣ ψ ⟩ ⋮ ] = [ c 1 c 2 ⋮ c n ⋮ ] \qquad\qquad\qquad\vert\psi\rangle=\sum_nc_n\left\vert n\right\rangle,\quad\psi(A)\equiv\begin{bmatrix}\langle 1\vert\psi\rangle\\\langle 2\vert\psi\rangle\\\vdots\\\langle n\vert\psi\rangle\\\vdots\end{bmatrix}=\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\\\vdots\end{bmatrix} ∣ψ⟩=∑ncn∣n⟩,ψ(A)≡ ⟨1∣ψ⟩⟨2∣ψ⟩⋮⟨n∣ψ⟩⋮ = c1c2⋮cn⋮
∣ ϕ ⟩ = ∑ m b m ∣ m ⟩ , ϕ ( A ) ≡ [ ⟨ 1 ∣ ϕ ⟩ ⟨ 2 ∣ ϕ ⟩ ⋮ ⟨ m ∣ ϕ ⟩ ⋮ ] = [ b 1 b 2 ⋮ b m ⋮ ] \qquad\qquad\qquad\vert\phi\rangle=\sum_mb_m\left\vert m\right\rangle,\quad\phi(A)\equiv\begin{bmatrix}\langle 1\vert\phi\rangle\\\langle 2\vert\phi\rangle\\\vdots\\\langle m\vert\phi\rangle\\\vdots\end{bmatrix}=\begin{bmatrix}b_1\\b_2\\\vdots\\b_m\\\vdots\end{bmatrix} ∣ϕ⟩=∑mbm∣m⟩,ϕ(A)≡ ⟨1∣ϕ⟩⟨2∣ϕ⟩⋮⟨m∣ϕ⟩⋮ = b1b2⋮bm⋮
\qquad 算符 F ^ \hat{F} F^ 在离散表象 A A A 中表现为一个矩阵 F ( A ) F(A) F(A),记为 [ F ] [F] [F],那么:
[
F
]
ψ
(
A
)
=
[
F
11
F
12
⋯
F
1
n
⋯
F
21
F
22
⋯
F
2
n
⋯
⋯
⋯
⋯
⋯
⋯
F
m
1
F
m
2
⋯
F
m
n
⋯
⋯
⋯
⋯
⋯
⋯
]
[
c
1
c
2
⋮
c
n
⋮
]
=
[
b
1
b
2
⋮
b
m
⋮
]
=
ϕ
(
A
)
\qquad\qquad\qquad[F]\psi(A)=\begin{bmatrix}F_{11}&F_{12}&\cdots&F_{1n}&\cdots\\ F_{21}&F_{22}&\cdots&F_{2n}&\cdots\\ \cdots&\cdots&\cdots&\cdots&\cdots& \\F_{m1}&F_{m2}&\cdots&F_{mn}&\cdots \\ \cdots&\cdots&\cdots&\cdots&\cdots& \\ \end{bmatrix}\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\\\vdots\end{bmatrix}=\begin{bmatrix}b_1\\b_2\\\vdots\\b_m\\\vdots\end{bmatrix}=\phi(A)
[F]ψ(A)=
F11F21⋯Fm1⋯F12F22⋯Fm2⋯⋯⋯⋯⋯⋯F1nF2n⋯Fmn⋯⋯⋯⋯⋯⋯
c1c2⋮cn⋮
=
b1b2⋮bm⋮
=ϕ(A)
\qquad
\qquad
矩阵运算中
b
m
=
∑
n
F
m
n
c
n
b_m=\sum_nF_{mn}c_n
bm=∑nFmncn,可得到矩阵
F
(
A
)
F(A)
F(A) 的矩阵元为
F
m
n
=
⟨
m
∣
F
^
∣
n
⟩
F_{mn}=\langle m\vert\hat{F}\vert n\rangle
Fmn=⟨m∣F^∣n⟩
将 F ^ ∣ ψ ⟩ = ∣ ϕ ⟩ \hat{F}\vert\psi\rangle=\vert\phi\rangle F^∣ψ⟩=∣ϕ⟩ 两边左乘 ⟨ m ∣ \langle m\vert ⟨m∣,那么 ⟨ m ∣ F ^ ∣ ψ ⟩ = ⟨ m ∣ ϕ ⟩ \langle m\vert\hat{F}\vert\psi\rangle=\langle m\vert\phi\rangle ⟨m∣F^∣ψ⟩=⟨m∣ϕ⟩,可以在 ⟨ m ∣ F ^ ∣ ψ ⟩ \langle m\vert\hat{F}\vert\psi\rangle ⟨m∣F^∣ψ⟩ 中插入完备性条件 ∑ n ∣ n ⟩ ⟨ n ∣ = I \sum_n\vert n\rangle\langle n\vert=I ∑n∣n⟩⟨n∣=I
b m = ⟨ m ∣ ϕ ⟩ = ⟨ m ∣ F ^ ∣ ψ ⟩ = ⟨ m ∣ F ^ ∑ n ∣ n ⟩ ⟨ n ∣ ψ ⟩ = ∑ n ⟨ m ∣ F ^ ∣ n ⟩ c n b_m=\langle m\vert\phi\rangle=\langle m\vert\hat{F}\vert\psi\rangle=\langle m\vert\hat{F}\textcolor{blue}{\sum_n\vert n\rangle\langle n\vert}\psi\rangle=\sum_n\textcolor{brown}{\langle m\vert\hat{F}\vert n\rangle}c_n bm=⟨m∣ϕ⟩=⟨m∣F^∣ψ⟩=⟨m∣F^∑n∣n⟩⟨n∣ψ⟩=∑n⟨m∣F^∣n⟩cn,比较可得 F m n = ⟨ m ∣ F ^ ∣ n ⟩ F_{mn}=\langle m\vert\hat{F}\vert n\rangle Fmn=⟨m∣F^∣n⟩
\qquad
\qquad
特别地,算符
A
^
\hat{A}
A^ 本身在表象
A
A
A 中的矩阵元为
A
m
n
=
⟨
m
∣
A
^
∣
n
⟩
=
a
n
⟨
m
∣
n
⟩
=
a
n
δ
m
n
A_{mn}=\langle m\vert\hat{A}\vert n\rangle=a_n\langle m\vert n\rangle=a_n\delta_{mn}
Amn=⟨m∣A^∣n⟩=an⟨m∣n⟩=anδmn,表示成矩阵为:
[ A ] = [ a 1 0 ⋯ 0 ⋯ 0 a 2 ⋯ 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 0 0 ⋯ a m ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ] \qquad\qquad\qquad[A]=\begin{bmatrix}a_1&0&\cdots&0&\cdots\\ 0&a_2&\cdots&0&\cdots\\ \cdots&\cdots&\cdots&\cdots&\cdots& \\0&0&\cdots&a_m&\cdots \\ \cdots&\cdots&\cdots&\cdots&\cdots& \\ \end{bmatrix} [A]= a10⋯0⋯0a2⋯0⋯⋯⋯⋯⋯⋯00⋯am⋯⋯⋯⋯⋯⋯
矩阵元也可以通过插入两个完备性条件 ∑ m ∣ m ⟩ ⟨ m ∣ = I \sum_m\vert m\rangle\langle m\vert=I ∑m∣m⟩⟨m∣=I 和 ∑ n ∣ n ⟩ ⟨ n ∣ = I \sum_n\vert n\rangle\langle n\vert=I ∑n∣n⟩⟨n∣=I 来得到,也就是:
( 1 ) (1) (1) 算符 F ^ \hat{F} F^ 的矩阵表示 F ( A ) = ∑ m ∣ m ⟩ ⟨ m ∣ F ^ ∑ n ∣ n ⟩ ⟨ n ∣ = ∑ m , n ⟨ m ∣ F ^ ∣ n ⟩ ∣ m ⟩ ⟨ n ∣ F(A)=\sum_m\vert m\rangle\langle m\vert\hat{F}\sum_n\vert n\rangle\langle n\vert=\sum_{m,n}\langle m\vert\hat{F}\vert n\rangle\vert m\rangle\langle n\vert F(A)=∑m∣m⟩⟨m∣F^∑n∣n⟩⟨n∣=∑m,n⟨m∣F^∣n⟩∣m⟩⟨n∣
( 2 ) (2) (2) 算符 A ^ \hat{A} A^ 本身的矩阵表示 [ A ] = ∑ m , n ⟨ m ∣ A ^ ∣ n ⟩ ∣ m ⟩ ⟨ n ∣ = ∑ m , n a n δ m n ∣ m ⟩ ⟨ n ∣ = ∑ n a n ∣ n ⟩ ⟨ n ∣ [A]=\sum_{m,n}\langle m\vert\hat{A}\vert n\rangle\vert m\rangle\langle n\vert=\sum_{m,n}a_n\delta_{mn}\vert m\rangle\langle n\vert=\sum_na_n\vert n\rangle\langle n\vert [A]=∑m,n⟨m∣A^∣n⟩∣m⟩⟨n∣=∑m,nanδmn∣m⟩⟨n∣=∑nan∣n⟩⟨n∣
\qquad
\qquad
∙
\quad\bullet\quad
∙平均值公式及矩阵表示
\qquad 在表象 A A A 中,仍然假设归一化态矢 ∣ ψ ⟩ = ∑ n c n ∣ n ⟩ \vert\psi\rangle=\sum_nc_n\left\vert n\right\rangle ∣ψ⟩=∑ncn∣n⟩,力学量 A A A 在态 ∣ ψ ⟩ \left\vert\psi\right\rangle ∣ψ⟩ 中的期望值为 ⟨ A ⟩ = ⟨ ψ ∣ A ^ ∣ ψ ⟩ \langle A\rangle=\langle\psi\vert\hat{A}\vert\psi\rangle ⟨A⟩=⟨ψ∣A^∣ψ⟩。
⟨ A ⟩ = ∑ n a n c n ∗ c n = ∑ n a n c n ⟨ ψ ∣ n ⟩ , c n ∗ = ⟨ ψ ∣ n ⟩ = ∑ n ⟨ ψ ∣ c n a n ∣ n ⟩ , A ^ ∣ n ⟩ = a n ∣ n ⟩ = ⟨ ψ ∣ ∑ n c n A ^ ∣ n ⟩ = ⟨ ψ ∣ A ^ ∑ n c n ∣ n ⟩ = ⟨ ψ ∣ A ^ ∣ ψ ⟩ \qquad\qquad\begin{aligned}\langle A\rangle=\displaystyle\sum_{n}a_nc_n^\ast c_n&=\sum_{n}a_n c_n\langle\psi\vert n\rangle,\qquad c_n^\ast=\langle\psi\vert n\rangle\\&=\sum_{n}\langle\psi\vert c_n a_n \vert n\rangle,\qquad \hat{A}\vert n\rangle=a_n\vert n\rangle\\&=\langle\psi\vert\sum_{n}c_n \hat{A}\vert n\rangle\\&=\langle\psi\vert\hat{A}\textcolor{slateblue}{\sum_{n}c_n \vert n\rangle}\\&=\langle\psi\vert\hat{A}\textcolor{slateblue}{\vert\psi\rangle}\end{aligned} ⟨A⟩=n∑ancn∗cn=n∑ancn⟨ψ∣n⟩,cn∗=⟨ψ∣n⟩=n∑⟨ψ∣cnan∣n⟩,A^∣n⟩=an∣n⟩=⟨ψ∣n∑cnA^∣n⟩=⟨ψ∣A^n∑cn∣n⟩=⟨ψ∣A^∣ψ⟩
\qquad 由于算符 A ^ \hat{A} A^ 本身在表象 A A A 中的矩阵元为 A m n = ⟨ m ∣ A ^ ∣ n ⟩ = a n δ m n A_{mn}=\langle m\vert\hat{A}\vert n\rangle=a_n\delta_{mn} Amn=⟨m∣A^∣n⟩=anδmn,表示成矩阵形式为:
⟨ A ⟩ = ∑ n a n c n ∗ c n = [ c 1 ∗ c 2 ∗ ⋯ c n ∗ ⋯ ] [ a 1 0 ⋯ 0 ⋯ 0 a 2 ⋯ 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 0 0 ⋯ a n ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ] [ c 1 c 2 ⋮ c n ⋮ ] = ψ † ( A ) [ A ] ψ ( A ) \qquad\qquad\begin{aligned}\langle A\rangle=\displaystyle\sum_{n}a_nc_n^\ast c_n&=[c_1^\ast\ \ c_2^\ast\ \cdots\ c_n^\ast\ \cdots]\begin{bmatrix}a_1&0&\cdots&0&\cdots\\ 0&a_2&\cdots&0&\cdots\\ \cdots&\cdots&\cdots&\cdots&\cdots& \\0&0&\cdots&a_n&\cdots \\ \cdots&\cdots&\cdots&\cdots&\cdots& \\ \end{bmatrix}\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\\\vdots\end{bmatrix}\\&=\psi^\dagger(A)[A]\psi(A)\end{aligned} ⟨A⟩=n∑ancn∗cn=[c1∗ c2∗ ⋯ cn∗ ⋯] a10⋯0⋯0a2⋯0⋯⋯⋯⋯⋯⋯00⋯an⋯⋯⋯⋯⋯⋯ c1c2⋮cn⋮ =ψ†(A)[A]ψ(A)
由于 c n ∗ c n = ∣ c n ∣ 2 c_n^\ast c_n=\vert c_n\vert^2 cn∗cn=∣cn∣2 表示体系处于量子态 ∣ ψ ⟩ \vert\psi\rangle ∣ψ⟩ 时测量力学量 A A A 取值为 a n a_n an 的概率, ⟨ A ⟩ = ∑ n ∣ c n ∣ 2 a n \textcolor{blue}{\langle A\rangle=\sum_n\vert c_n\vert^2 a_n} ⟨A⟩=∑n∣cn∣2an 就是求数学期望
\qquad
\qquad
在表象
A
A
A 中,对于任意力学量算符
F
^
\hat{F}
F^,可观测量
F
F
F 在态
∣
ψ
⟩
\left\vert\psi\right\rangle
∣ψ⟩ 中的期望值仍然为
⟨
F
⟩
=
⟨
ψ
∣
F
^
∣
ψ
⟩
\langle F\rangle=\langle\psi\vert\hat{F}\vert\psi\rangle
⟨F⟩=⟨ψ∣F^∣ψ⟩。
⟨ F ⟩ = ⟨ ψ ∣ F ^ ∣ ψ ⟩ = ⟨ ψ ∣ ∑ m ∣ m ⟩ ⟨ m ∣ F ^ ∑ n ∣ n ⟩ ⟨ n ∣ ψ ⟩ = ∑ m ⟨ ψ ∣ m ⟩ ⟨ m ∣ F ^ ∑ n ∣ n ⟩ c n = ∑ m , n c m ∗ c n ⟨ m ∣ F ^ ∣ n ⟩ = [ c 1 ∗ ⋯ c n ∗ ⋯ ] [ F ] [ c 1 c 2 ⋮ c n ⋮ ] = ψ † ( A ) F ( A ) ψ ( A ) \qquad\qquad\begin{aligned}\langle F\rangle=\langle\psi\vert\hat{F}\vert\psi\rangle&=\langle\psi\vert\sum_m\vert m\rangle\langle m\vert\hat{F}\sum_n\vert n\rangle\langle n\vert\psi\rangle \\ &= \sum_m \langle\psi\vert m\rangle\langle m\vert\hat{F}\sum_n\vert n\rangle c_n \\ &= \sum_{m,n} c_m^\ast c_n \langle m\vert\hat{F}\vert n\rangle =[c_1^\ast\ \cdots\ c_n^\ast\ \cdots][F]\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\\\vdots\end{bmatrix} \\ &=\psi^\dagger(A)F(A)\psi(A) \end{aligned} ⟨F⟩=⟨ψ∣F^∣ψ⟩=⟨ψ∣m∑∣m⟩⟨m∣F^n∑∣n⟩⟨n∣ψ⟩=m∑⟨ψ∣m⟩⟨m∣F^n∑∣n⟩cn=m,n∑cm∗cn⟨m∣F^∣n⟩=[c1∗ ⋯ cn∗ ⋯][F] c1c2⋮cn⋮ =ψ†(A)F(A)ψ(A)
算符 F ^ \hat{F} F^ 所对应矩阵 F ( A ) F(A) F(A) 的矩阵元为 F m n = ⟨ m ∣ F ^ ∣ n ⟩ F_{mn}=\langle m\vert\hat{F}\vert n\rangle Fmn=⟨m∣F^∣n⟩
\qquad
7. 表象变换
\qquad 态矢之间的基矢可以有多种选择。
∙ \quad\bullet\quad ∙假设力学量 A A A 对应的线性厄密算符为 A ^ \hat{A} A^,其正交归一的本征矢 { ψ n } \{\psi_n\} {ψn},满足:
⟨ ψ n ∣ ψ k ⟩ = δ n k , ∑ n ∣ ψ n ⟩ ⟨ ψ n ∣ = I , ⟨ ψ ∣ ψ ⟩ = 1 \qquad\qquad\qquad\langle\psi_n\vert\psi_k\rangle=\delta_{nk},\ \sum_n\vert\psi_n\rangle\langle\psi_n\vert=I,\ \langle\psi\vert\psi\rangle=1 ⟨ψn∣ψk⟩=δnk, ∑n∣ψn⟩⟨ψn∣=I, ⟨ψ∣ψ⟩=1
\qquad 态矢 ∣ ψ ⟩ \vert\psi\rangle ∣ψ⟩ 在 A A A 表象中展开为 ∣ ψ ⟩ = ∑ n ∣ ψ n ⟩ ⟨ ψ n ∣ ψ ⟩ = ∑ n c n ∣ ψ n ⟩ , c n = ⟨ ψ n ∣ ψ ⟩ \vert\psi\rangle=\displaystyle\sum_n\vert\psi_n\rangle\langle\psi_n\vert\psi\rangle=\displaystyle\sum_nc_n\vert\psi_n\rangle,\quad c_n=\langle\psi_n\vert\psi\rangle ∣ψ⟩=n∑∣ψn⟩⟨ψn∣ψ⟩=n∑cn∣ψn⟩,cn=⟨ψn∣ψ⟩
\qquad 由 { c n } \{c_n\} {cn} 组成的列矢量是态矢 ∣ ψ ⟩ \vert\psi\rangle ∣ψ⟩ 在 A A A 表象中的波函数:
ψ ( A ) ≡ [ c 1 c 2 ⋮ c n ⋮ ] , ψ † ( A ) ≡ [ c 1 ∗ c 2 ∗ ⋯ c n ∗ ⋯ ] \qquad\qquad\qquad\psi(A)\equiv\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\\\vdots\end{bmatrix},\quad\psi^\dagger(A)\equiv[c_1^\ast\ \ c_2^\ast\ \ \cdots\ \ c_n^\ast\ \ \cdots] ψ(A)≡ c1c2⋮cn⋮ ,ψ†(A)≡[c1∗ c2∗ ⋯ cn∗ ⋯]
\qquad 任意线性算符 F F F 在 A A A 表象中的矩阵表示为 F ( A ) F(A) F(A),其矩阵元为 F m n = ⟨ ψ m ∣ F ^ ∣ ψ n ⟩ F_{mn}=\langle\psi_m\vert\hat{F}\vert\psi_n\rangle Fmn=⟨ψm∣F^∣ψn⟩。
\qquad
∙
\quad\bullet\quad
∙另选一个力学量
R
R
R 所对应线性厄密算符为
R
^
\hat{R}
R^,其正交归一的本征矢
{
ϕ
ν
}
\{\phi_{\nu}\}
{ϕν},满足:
⟨ ϕ ν ∣ ϕ μ ⟩ = δ ν μ , ∑ ν ∣ ϕ ν ⟩ ⟨ ϕ ν ∣ = I , ⟨ ψ ∣ ψ ⟩ = 1 \qquad\qquad\qquad\langle\phi_\nu\vert\phi_\mu\rangle=\delta_{\nu\mu},\ \sum_{\nu}\vert\phi_\nu\rangle\langle\phi_\nu\vert=I,\ \langle\psi\vert\psi\rangle=1 ⟨ϕν∣ϕμ⟩=δνμ, ∑ν∣ϕν⟩⟨ϕν∣=I, ⟨ψ∣ψ⟩=1
\qquad 态矢 ∣ ψ ⟩ \vert\psi\rangle ∣ψ⟩ 在 R R R 表象中展开为: ∣ ψ ⟩ = ∑ ν ∣ ϕ ν ⟩ ⟨ ϕ ν ∣ ψ ⟩ = ∑ ν a ν ∣ ϕ ν ⟩ , a ν = ⟨ ϕ ν ∣ ψ ⟩ \vert\psi\rangle=\displaystyle\sum_{\nu}\vert\phi_\nu\rangle\langle\phi_\nu\vert\psi\rangle=\displaystyle\sum_{\nu}a_{\nu}\vert\phi_\nu\rangle,\quad a_{\nu}=\langle\phi_\nu\vert\psi\rangle ∣ψ⟩=ν∑∣ϕν⟩⟨ϕν∣ψ⟩=ν∑aν∣ϕν⟩,aν=⟨ϕν∣ψ⟩
\qquad 由 { a ν } \{a_{\nu}\} {aν} 组成的列矢量就是态矢 ∣ ψ ⟩ \vert\psi\rangle ∣ψ⟩ 在 R R R 表象中的波函数:
ψ ( R ) ≡ [ a 1 a 2 ⋮ a ν ⋮ ] , ψ † ( R ) ≡ [ a 1 ∗ a 2 ∗ ⋯ a ν ∗ ⋯ ] \qquad\qquad\qquad\psi(R)\equiv\begin{bmatrix}a_1\\a_2\\\vdots\\a_{\nu}\\\vdots\end{bmatrix},\quad\psi^\dagger(R)\equiv[a_1^\ast\ \ a_2^\ast\ \ \cdots\ \ a_{\nu}^\ast\ \ \cdots] ψ(R)≡ a1a2⋮aν⋮ ,ψ†(R)≡[a1∗ a2∗ ⋯ aν∗ ⋯]
\qquad 任意线性算符 F F F 在 R R R 表象中的矩阵表示为 F ( R ) F(R) F(R),其矩阵元为 F μ ν = ⟨ ϕ μ ∣ F ^ ∣ ϕ ν ⟩ F_{\mu\nu}=\langle\phi_\mu\vert\hat{F}\vert\phi_\nu\rangle Fμν=⟨ϕμ∣F^∣ϕν⟩。
\qquad
∙
\quad\bullet\quad
∙同一态矢
∣
ψ
⟩
\vert\psi\rangle
∣ψ⟩ 在
A
A
A 和
R
R
R 表象之间可通过变换矩阵
S
S
S 联系起来,即
ψ
(
R
)
=
S
ψ
(
A
)
\textcolor{crimson}{\psi(R)=S\psi(A)}
ψ(R)=Sψ(A),表示成矩阵运算为:
[ a 1 a 2 ⋮ a ν ⋮ ] = [ S 11 S 12 ⋯ S 1 n ⋯ S 21 S 22 ⋯ S 2 n ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ S ν 1 S ν 2 ⋯ S ν n ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ] ⏟ [ S ] [ c 1 c 2 ⋮ c n ⋮ ] \qquad\qquad\qquad\begin{bmatrix}a_1\\a_2\\\vdots\\a_{\nu}\\\vdots\end{bmatrix}=\underbrace{\begin{bmatrix}S_{11}&S_{12}&\cdots&S_{1n}&\cdots\\ S_{21}&S_{22}&\cdots&S_{2n}&\cdots\\ \cdots&\cdots&\cdots&\cdots&\cdots& \\S_{\nu1}&S_{\nu2}&\cdots&S_{\nu n}&\cdots \\ \cdots&\cdots&\cdots&\cdots&\cdots& \\ \end{bmatrix}}_{[S]}\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\\\vdots\end{bmatrix} a1a2⋮aν⋮ =[S] S11S21⋯Sν1⋯S12S22⋯Sν2⋯⋯⋯⋯⋯⋯S1nS2n⋯Sνn⋯⋯⋯⋯⋯⋯ c1c2⋮cn⋮ ,此处 { a ν = ⟨ ϕ n ∣ ψ ⟩ c n = ⟨ ψ n ∣ ψ ⟩ \begin{cases}a_{\nu}=\langle\phi_n\vert\psi\rangle\\c_n=\langle\psi_n\vert\psi\rangle\end{cases} {aν=⟨ϕn∣ψ⟩cn=⟨ψn∣ψ⟩
\qquad 显然有 a ν = ∑ n S ν n c n a_{\nu}=\displaystyle\sum_{n}S_{\nu n}c_n aν=n∑Sνncn,又由于 ⟨ ϕ ν ∣ = ∑ n ⟨ ϕ ν ∣ ψ n ⟩ ⟨ ψ n ∣ \langle\phi_\nu\vert=\displaystyle\sum_{n}\langle\phi_\nu\vert\psi_n\rangle\langle\psi_n\vert ⟨ϕν∣=n∑⟨ϕν∣ψn⟩⟨ψn∣,可得到
{ a ν = ∑ n S ν n c n ⟹ ⟨ ϕ ν ∣ ψ ⟩ = ∑ n S ν n ⟨ ψ n ∣ ψ ⟩ ⟨ ϕ ν ∣ = ∑ n ⟨ ϕ ν ∣ ψ n ⟩ ⟨ ψ n ∣ ⟹ ⟨ ϕ ν ∣ ψ ⟩ = ∑ n ⟨ ϕ ν ∣ ψ n ⟩ ⟨ ψ n ∣ ψ ⟩ \qquad\qquad\qquad\begin{cases} a_{\nu}=\displaystyle\sum_{n}S_{\nu n}c_n&\Longrightarrow\quad\langle\phi_\nu\vert\psi\rangle=\displaystyle\sum_nS_{\nu n}\langle\psi_n\vert\psi\rangle \\ \langle\phi_\nu\vert=\displaystyle\sum_{n}\langle\phi_\nu\vert\psi_n\rangle\langle\psi_n\vert&\Longrightarrow\quad\langle\phi_\nu\vert\psi\rangle=\displaystyle\sum_{n}\langle\phi_\nu\vert\psi_n\rangle\langle\psi_n\vert\psi\rangle \end{cases} ⎩ ⎨ ⎧aν=n∑Sνncn⟨ϕν∣=n∑⟨ϕν∣ψn⟩⟨ψn∣⟹⟨ϕν∣ψ⟩=n∑Sνn⟨ψn∣ψ⟩⟹⟨ϕν∣ψ⟩=n∑⟨ϕν∣ψn⟩⟨ψn∣ψ⟩
\qquad 对比可得到 S ν n = ⟨ ϕ ν ∣ ψ n ⟩ \textcolor{crimson}{S_{\nu n}=\langle\phi_\nu\vert\psi_n\rangle} Sνn=⟨ϕν∣ψn⟩。
变换矩阵 S S S 完全由基矢 { ψ n } \{\psi_n\} {ψn} 和 { ϕ ν } \{\phi_{\nu}\} {ϕν} 的相互关系决定,而与态矢 ∣ ψ ⟩ \vert\psi\rangle ∣ψ⟩ 无关。
\qquad 变换矩阵 S S S 的厄密共轭矩阵 S † S^\dagger S† 的矩阵元为 S n ν † = ( S ν n ) ∗ = ⟨ ϕ ν ∣ ψ n ⟩ ∗ = ⟨ ψ n ∣ ϕ ν ⟩ \textcolor{crimson}{S_{n\nu}^\dagger=}(S_{\nu n})^\ast=\langle\phi_\nu\vert\psi_n\rangle^\ast=\textcolor{crimson}{\langle\psi_n\vert\phi_\nu\rangle} Snν†=(Sνn)∗=⟨ϕν∣ψn⟩∗=⟨ψn∣ϕν⟩,可得到:
{ [ S † S ] n m = ∑ ν S n ν † S ν m = ∑ ν ⟨ ψ n ∣ ϕ ν ⟩ ⟨ ϕ ν ∣ ψ m ⟩ = ⟨ ψ n ∣ ψ m ⟩ = δ n m [ S S † ] ν μ = ∑ n S ν n S n μ † = ∑ n ⟨ ϕ ν ∣ ψ n ⟩ ⟨ ψ n ∣ ϕ μ ⟩ = ⟨ ϕ ν ∣ ϕ μ ⟩ = δ ν μ \qquad\qquad\qquad\begin{cases}[S^\dagger S]_{nm}=\displaystyle\sum_{\nu}S_{n\nu}^\dagger S_{\nu m}=\sum_{\nu}\langle\psi_n\vert\phi_\nu\rangle\langle\phi_\nu\vert\psi_m\rangle=\langle\psi_n\vert\psi_m\rangle=\delta_{nm} \\ \\ [SS^\dagger]_{\nu\mu}=\displaystyle\sum_{n}S_{\nu n}S_{n\mu}^\dagger =\sum_{n}\langle\phi_\nu\vert\psi_n\rangle\langle\psi_n\vert\phi_\mu\rangle=\langle\phi_\nu\vert\phi_\mu\rangle=\delta_{\nu\mu} \end{cases} ⎩ ⎨ ⎧[S†S]nm=ν∑Snν†Sνm=ν∑⟨ψn∣ϕν⟩⟨ϕν∣ψm⟩=⟨ψn∣ψm⟩=δnm[SS†]νμ=n∑SνnSnμ†=n∑⟨ϕν∣ψn⟩⟨ψn∣ϕμ⟩=⟨ϕν∣ϕμ⟩=δνμ
\qquad 因此, S S † = S † S = I SS^\dagger=S^\dagger S=I SS†=S†S=I 都是单位矩阵(恒等算符),并且将 S S S 与 S † S^\dagger S† 称为幺正矩阵 (unitary matrix) \text{(unitary\ matrix)} (unitary matrix)。
\qquad
结论1:若有表象之间的变换关系
ψ
(
R
)
=
S
ψ
(
A
)
\psi(R)=S\psi(A)
ψ(R)=Sψ(A),那么存在以下关系:
ψ
(
R
)
=
S
ψ
(
A
)
⟹
ψ
(
A
)
=
S
†
ψ
(
R
)
\qquad\qquad\qquad\textcolor{crimson}{\psi(R)=S\psi(A)}\qquad\Longrightarrow\quad\textcolor{crimson}{\psi(A)=S^\dagger\psi(R)}
ψ(R)=Sψ(A)⟹ψ(A)=S†ψ(R) (两边左乘
S
†
S^\dagger
S†)
ψ
†
(
R
)
=
ψ
†
(
A
)
S
†
⟹
ψ
†
(
A
)
=
ψ
†
(
R
)
S
\qquad\qquad\qquad\textcolor{crimson}{\psi^\dagger(R)=\psi^\dagger(A)S^\dagger}\quad\Longrightarrow\quad\textcolor{crimson}{\psi^\dagger(A)=\psi^\dagger(R)S}
ψ†(R)=ψ†(A)S†⟹ψ†(A)=ψ†(R)S (两边右乘
S
S
S)
表象的幺正变换实际上就是线性代数中“正交变换”概念,幺正矩阵就是(互相正交的特征向量作为列矢量的)正交矩阵
\qquad
结论2:任意线性算符
F
^
\hat{F}
F^ 在
A
A
A 表象中的矩阵表示为
F
(
A
)
F(A)
F(A),矩阵元为
F
m
n
=
⟨
ψ
m
∣
F
^
∣
ψ
n
⟩
F_{mn}=\langle\psi_m\vert\hat{F}\vert\psi_n\rangle
Fmn=⟨ψm∣F^∣ψn⟩;在
R
R
R 表象中的矩阵表示为
F
(
R
)
F(R)
F(R),矩阵元为
F
μ
ν
=
⟨
ϕ
μ
∣
F
^
∣
ϕ
ν
⟩
F_{\mu\nu}=\langle\phi_\mu\vert\hat{F}\vert\phi_\nu\rangle
Fμν=⟨ϕμ∣F^∣ϕν⟩。
\qquad
\qquad
根据
{
S
ν
n
=
⟨
ϕ
ν
∣
ψ
n
⟩
S
n
ν
†
=
⟨
ψ
n
∣
ϕ
ν
⟩
\begin{cases}\textcolor{crimson}{S_{\nu n}=\langle\phi_\nu\vert\psi_n\rangle} \\ \textcolor{crimson}{S_{n\nu}^\dagger=\langle\psi_n\vert\phi_\nu\rangle} \end{cases}
{Sνn=⟨ϕν∣ψn⟩Snν†=⟨ψn∣ϕν⟩,可得到:
F
(
R
)
=
S
F
(
A
)
S
†
\textcolor{crimson}{F(R)=SF(A)S^\dagger}
F(R)=SF(A)S† 或
F
(
A
)
=
S
†
F
(
R
)
S
\textcolor{crimson}{F(A)=S^\dagger F(R)S}
F(A)=S†F(R)S
此处的矩阵乘法 F ( R ) = S F ( A ) S † F(R)=SF(A)S^\dagger F(R)=SF(A)S† 相当于矩阵元的计算:
F μ ν = ⟨ ϕ μ ∣ F ^ ∣ ϕ ν ⟩ = ⟨ ϕ μ ∣ ∑ n ∣ ψ n ⟩ ⟨ ψ n ∣ F ^ ∑ m ∣ ψ m ⟩ ⟨ ψ m ∣ ∣ ϕ ν ⟩ = ∑ n ∑ m S μ n ⟨ ψ n ∣ F ^ ∣ ψ m ⟩ S m ν † = ∑ n ∑ m S μ n F n m S m ν † \qquad\begin{aligned}F_{\mu\nu}=\langle\phi_\mu\vert\hat{F}\vert\phi_\nu\rangle&=\langle\phi_\mu\vert\sum_n\vert\psi_n\rangle\langle\psi_n\vert\hat{F}\sum_m\vert\psi_m\rangle\langle\psi_m\vert\vert\phi_\nu\rangle\\&=\sum_n\sum_mS_{\mu n}\langle\psi_n\vert\hat{F}\vert\psi_m\rangle S_{m\nu}^\dagger \\&=\sum_n\sum_mS_{\mu n}F_{nm}S_{m\nu}^\dagger \end{aligned} Fμν=⟨ϕμ∣F^∣ϕν⟩=⟨ϕμ∣n∑∣ψn⟩⟨ψn∣F^m∑∣ψm⟩⟨ψm∣∣ϕν⟩=n∑m∑Sμn⟨ψn∣F^∣ψm⟩Smν†=n∑m∑SμnFnmSmν†
\qquad
结论3:表象变换时,态矢和算符的具体矩阵表示与所选择的表象有关,但它们描述的物理内容不受表象选择的影响。
(
1
)
\qquad(1)
(1) 态矢的模方不变
⟨
ψ
∣
ψ
⟩
=
ψ
†
(
A
)
ψ
(
A
)
=
ψ
†
(
R
)
S
S
†
ψ
(
R
)
=
ψ
†
(
R
)
ψ
(
R
)
\qquad\qquad\langle\psi\vert\psi\rangle=\psi^\dagger(A)\psi(A)=\psi^\dagger(R)SS^\dagger\psi(R)=\psi^\dagger(R)\psi(R)
⟨ψ∣ψ⟩=ψ†(A)ψ(A)=ψ†(R)SS†ψ(R)=ψ†(R)ψ(R)
⟨
ψ
∣
ϕ
⟩
=
ψ
†
(
A
)
ϕ
(
A
)
=
ψ
†
(
R
)
S
S
†
ϕ
(
R
)
=
ψ
†
(
R
)
ϕ
(
R
)
\qquad\qquad\langle\psi\vert\phi\rangle=\psi^\dagger(A)\phi(A)=\psi^\dagger(R)SS^\dagger\phi(R)=\psi^\dagger(R)\phi(R)
⟨ψ∣ϕ⟩=ψ†(A)ϕ(A)=ψ†(R)SS†ϕ(R)=ψ†(R)ϕ(R)
(
2
)
\qquad(2)
(2)力学量算符的本征值与表象选择无关
F
(
A
)
ψ
λ
(
A
)
=
λ
ψ
λ
(
A
)
→
S
†
F
(
R
)
S
S
†
ψ
λ
(
R
)
=
λ
S
†
ψ
λ
(
R
)
→
F
(
R
)
ψ
λ
(
R
)
=
λ
ψ
λ
(
R
)
\qquad\qquad\textcolor{royalblue}{F(A)\psi_\lambda(A)=\lambda\psi_\lambda(A)}\ \ \to\ \ S^\dagger F(R)SS^\dagger\psi_\lambda(R)=\lambda S^\dagger\psi_\lambda(R)\newline\qquad\qquad\to\ \textcolor{royalblue}{F(R)\psi_\lambda(R)=\lambda\psi_\lambda(R)}
F(A)ψλ(A)=λψλ(A) → S†F(R)SS†ψλ(R)=λS†ψλ(R)→ F(R)ψλ(R)=λψλ(R)
(
3
)
\qquad(3)
(3)平均值公式不变
⟨
F
⟩
=
⟨
ψ
∣
F
^
∣
ψ
⟩
\langle F\rangle=\langle\psi\vert\hat{F}\vert\psi\rangle
⟨F⟩=⟨ψ∣F^∣ψ⟩
⟨
F
⟩
=
⟨
ψ
∣
F
^
∣
ψ
⟩
=
ψ
†
(
A
)
F
(
A
)
ψ
(
A
)
=
ψ
†
(
R
)
S
S
†
F
(
R
)
S
S
†
ψ
(
R
)
→
⟨
F
⟩
=
ψ
†
(
R
)
F
(
R
)
ψ
(
R
)
\qquad\qquad\langle F\rangle=\langle\psi\vert\hat{F}\vert\psi\rangle=\textcolor{royalblue}{\psi^\dagger(A)F(A)\psi(A)}=\psi^\dagger(R)SS^\dagger F(R)SS^\dagger\psi(R)\newline\qquad\qquad\to\ \langle F\rangle=\textcolor{royalblue}{\psi^\dagger(R)F(R)\psi(R)}
⟨F⟩=⟨ψ∣F^∣ψ⟩=ψ†(A)F(A)ψ(A)=ψ†(R)SS†F(R)SS†ψ(R)→ ⟨F⟩=ψ†(R)F(R)ψ(R)
(
4
)
\qquad(4)
(4)算符之间的相互关系不变
\qquad\qquad
若
F
^
=
P
^
Q
^
\hat{F}=\hat{P}\hat{Q}
F^=P^Q^,那么
F
(
A
)
=
P
(
A
)
Q
(
A
)
=
P
(
R
)
Q
(
R
)
=
F
(
R
)
F(A)=P(A)Q(A)=P(R)Q(R)=F(R)
F(A)=P(A)Q(A)=P(R)Q(R)=F(R)
\qquad
主要参考书籍:
[1] Griffith. 量子力学概论
[2] 钱伯初. 量子力学
[3] 周世勋. 量子力学教程