- 博客(61)
- 收藏
- 关注
原创 numpy is not available
在测试第一个程序的时候,出现Numpy is not available的错误,根据。安装的时候,安装的是最新版的numpy,检查numpy的版本为2.1.1版。我的pytorch版本为1.12.1,选择不高于1.21的版本即可。的办法知道是因为numpy与pytorch版本不一致造成的。2、安装需要的numpy版本,比如1.21版。
2024-09-27 17:31:02 748
原创 Hilbert-Huang变换
Hilbert-Huang变换是经验模态分解(EMD)和Hilbert时频谱的统称。步骤:1、将信号用EMD分解为若干固有模态函数(IMF);2、对每个IMF分量进行Hilbert变换得到瞬时频率和瞬时幅值;3、得到信号的时频分布。
2024-06-27 15:49:07 563 1
原创 信号处理——时频分析
1、只能反映信号的整体特性;(完全是时域或频域)2、要求信号满足平稳条件;3、必须获得时域中的全部信息。所以引入时频分析,同时使用时间和频率的联合函数来表示信号。
2024-06-27 09:14:56 566
原创 信号基本分析方法——频域分析
随机信号的时域分析只能提供有限的时域故障特征信息,故障发生时往往会引起信号频率结构的变化,而故障频率可以计算和预知,通过检测频率的幅值变换规律,就可以监控故障的发展过程。频谱分析的理论基础是傅里叶变换,傅里叶变换包括傅里叶级数和傅里叶积分。
2024-06-22 21:58:57 1091
原创 R语言软件安装及配置
下载好后,返回,选择RTools进入后,选择RTools4.4安装,和R的版本一致。点进来选择中间的RTools44 installer。选择浏览,确定安装路径,路径中不要出现中文和空格。根据自己系统情况下载,我选择windows系统。点击红色框,download拉到。选择后就开始下载RTools。双击下载好的软件,开始安装。可能需要等待几分钟安装完成。选择download R。安装完成,选择结束即可。选择安装路径然后下一步。然后一致默认,下一步。开始安装等待安装完成。选择最新的版本下载。
2024-05-13 19:42:42 2863
原创 YOLOv1 代码实现
下载完成,解压VOC2012后有五个文件夹。Annotations:保存的是xml文件,里面存放的是对应照片的标注信息。ImageSets里面有四个文件夹:保存的是txt文件。我们关注的是Main里面的train.txt和val.txt。JPEGImages:保存的是对应的图片。剩下两个跟分割有关,暂时不管。
2024-04-17 15:58:08 1073 1
原创 《pytorch深度学习实战》学习笔记第2章
)预处理包括:图像缩放到256*256像素,围绕中心裁剪到224*224像素,转为张量,归一化处理,使用定义的均值和标准差。return out。
2024-04-04 16:40:03 1099
原创 GoogLeNet论文学习笔记
目的:我们提出了一个叫Inception的深度卷积神经网络结构;成绩:它在ILSVRC2014的分类和目标检测中取得最高水平。优点:这个模型结构的特点是在网络内部提高资源利用率;通过精心设计,允许增加网络的深度和宽度,同时保持计算量不变;为了提高优化质量,结构决策基于Hebbian原则和多尺度信息处理设计;提交时使用GoogLeNet是一个22层的深度网络。
2024-03-26 09:15:28 700
原创 02神经网络的学习及代码实现
学习”是指从训练数据中自动获取最优权重参数的过程。引入损失函数指标,学习的目的是以该损失函数为基准,找出尽可能小的损失函数的值。
2024-01-31 20:20:31 1025
原创 labelImg的安装与使用
以检测跌倒图片为例,在桌面上建立一个空文件夹,更改名字为pp-fall,复制10张图片到pp-fall文件夹测试。框选需要的位置,并将其设置为0,如果还有其他物品需要框选,数字设置为1,以此类推。默认将标签好的图片保存为xml后缀的文件,默认保存在原文件夹里面。由于我是用的python环境为3.10,版本太高,降低版本即可。labelimg会导入刚才的图片文件夹,并加载第一张图片。我的电脑没有安装labelImg,所以需要安装。其他的图片按照以上的步骤执行保存即可。会有个框选项,选中需要选的区域。
2024-01-08 11:16:44 2033
原创 yolov作者简介
他提出了最著名的YOLO算法。其中YOLOV1的引用量达到了40287次。作者叫Joseph Redmon,在谷歌学术上搜索作者的简介。
2023-10-18 11:20:20 389
原创 Yolov8方法笔记
参考资料:【1】参考的博客:YOLOV8最强操作教程._魔鬼面具的博客-CSDN博客【2】对应的视频:YOLOV8保姆级教学视频._哔哩哔哩_bilibili【3】yolo环境安装:安装yolo环境目录1、下载yolov8模型:2、在本地解压缩,解压后的文件 3、用vscode打开 4、将转换数据集(以口罩检测为准)5、配置和执行 6、验证安装的过程可以参照参考资料【3】的视频。步骤如下:名字就定为yolov8,输入命令:(2)安装pytorch打开pytorch官网:pytorch官网检查电脑c
2023-07-07 14:41:08 5742
原创 使用stat时出现“‘DataFrame‘ object has no attribute ‘append‘”的解决办法
查看问题是出在显示阶段,问题应该是出现在打印报告的时候,所以定位到reporter程序里面,我的程序地址路径如下,基本路径差不多,都是在Anaconda安装目录下的虚拟环境里面。网上有让降低pandas版本的,降低后没有解决问题。问题解决,能够正常打印参数。
2023-05-08 11:21:17 19870 9
原创 机器学习概念
(1)只适用于单一领域和单项任务,需求修改,有可能要重写整个系统;机器学习又称为预测分析或统计学习,是一个交叉学科,是从数据中提取知识。机器学习算法仅向程序输入海量数据,算法就可以提取需要的特征。(2)制定规则的人必须对决策过程非常熟悉。基于医学影像判断肿瘤是否为良性。在早期,需要人为制定决策规则来完成设计任务。检测信用卡交易中的诈骗行为。:从输入输出对中进行学习的机器学习算法。检测网站的异常访问模式。:只有输入数据是已知,没有输出数据。样本:机器学习中,每个实体或每一行。特征:机器学习中的每一列。
2023-05-04 17:01:33 689
原创 LeNet-5用在cifar-10数据集
这篇文章借鉴的是学习视频[2]的内容,视频内容从原理到代码实现都讲的比较详细。本文是以视频为主线,以实现为主,理论为辅,旨在能够理解模型的基本实现方法。软件:VSCode()硬件:GPU数据集:cifar-10()共包含10个类别RGB图片:飞机、汽车、鸟类、猫、鹿、狗、蛙类、马、船和卡车。图片尺寸:32×32训练集:50000张测试集:10000张图1 数据集部分数据展示。
2022-12-19 16:52:27 850
原创 LeNet-5应用
数据导入有两步,先用datasets导入,然后用dataloader加载。训练结果在epoch=5时,能达到91%。可视化预测结果,可以看出,16个预测14个准确,准确率87.5%。MNIST共有70000张图片,60000张训练集,10000张测试集。图片大小28*28,灰度图。因为是灰度图,所以mean和std都只有一个参数,如果为RGB,都为(0.5,0.5,0.5)预测图100%正确。所以提高epoch还是有用的。预测结果epoch=3的时候已经成绩达到99%。其它都不需要修改,直接可以进行训练。
2022-12-19 14:59:47 1302
原创 AlexNet
AleNet是真正意义上的深度卷积神经网络,并在2012年ImagNet竞赛中获得冠军。相比于LeNet网络,Alexnet深度更深,参数更多,应用更广泛。为了改善性能,引入了ReLU、Dropout和LRN等方法,并使用了双GPU加速。
2022-11-17 19:59:24 1993
原创 【00】LeNet的发展及应用
LeNet是Yann LeCun在1998年的发表的论文[1]提出来的第一个卷积神经网络,最早是用于识别手写数字和印刷字符。由于模型比较简单,所以方便新手入门学习。共有3个模型组成:LeNet-1:5 层模型,一个简单的 CNN。LeNet-4:6 层模型,是 LeNet-1 的改进版本。LeNet-5:7 层模型,最著名的版本。(最常用)其中LeNet是以LeCun的名字命名,后面的数字代表研究成果的代号。
2022-10-09 09:34:24 2218
转载 超参数(Hyperparameter)
什么是超参数?机器学习模型中一般有两类参数:一类需要从数据中学习和估计得到,称为模型参数(Parameter)---即模型本身的参数。比如,线性回归直线的加权系数(斜率)及其偏差项(截距)都是模型参数。还有一类则是机器学习算法中的调优参数(tuning parameters),需要人为设定,称为超参数(Hyperparameter)。比如,正则化系数λ,决策树模型中树的深度。参数和超参数的区别:模型参数是模型内部的配置变量,需要用数据估计模型参数的值;模型超参数是模型外部的配置,需要手动设置超参数的值。机器
2022-07-11 11:55:24 991
原创 ubuntu下安装anaconda并运行
参考资料:从Ubuntu系统下Anaconda使用方法总结 - 走看看https://www.csdn.net/tags/MtTaEgzsNjgwNjEwLWJsb2cO0O0O.html1、下载anaconda进入anaconda官网:Anaconda | Anaconda Distribution图1 选择相应的linux的版本进行下载。或者在ubuntu里面输入命令:说明:上面的地址获取可以在图1需要下载的版本上点右键,然后”复制链接地址“就可以了。2、安装anaconda先cd到anacond
2022-06-28 15:09:13 9240 3
原创 00感知机的原理与python实现
感知机(perceptron)是由美国学者Frank Rosennblatt在1957年提出来的,它是神经网络(深度学习)的起源算法,感知机有多个输入信号,一个输出信号。信号只有1、0两种取值。最简单的两输入感知机的结构:图2.1 单层感知机其中,符号说明:——输入信号y——输出信号————神经元、节点根据上面的图2.1,可以将感知机的输出表示为:(2.1)根据式2.1计算出来的y的值可能是介于(0,1)之间的某一个值,而我们希望y的值只取0或者1。所以需要给定一个阈值。
2022-05-26 16:53:27 306
原创 YOLOv1(1)
一、作者介绍:Joseph Redmon[1]主页:Survival Strategies for the Robot Rebellion个人简历二、YOLO介绍[2]YOLO是You Only Look Once的缩写,即“你只需要看一次”。参考资料:[1]https://blog.csdn.net/weixin_47196664/article/details/117538551[2]https://blog.csdn.net/shuiyixin/arti..
2022-05-04 11:26:34 589
原创 奇异值分解(三)
知乎上稀疏矩阵奇异值分解形象的SVD讲解视频此文章是对上面的文章做笔记并对例子进行实现。奇异值分解就是将矩阵A分解为三部分:A=UΣ\SigmaΣVTV^TVT其中
2021-11-18 21:55:24 2239
原创 张量学习笔记 | 基础知识
参考资料:1、【科普】什么是张量?_哔哩哔哩_bilibili2、张量的直观解释_哔哩哔哩_bilibili3、浅谈张量分解(一):如何简单地进行张量分解? - 知乎 (zhihu.com)4、浅谈张量分解(二):张量分解的数学基础 - 知乎 (zhihu.com)5、张量的一些基本操作 - 知乎 (zhihu.com)6、浅析张量分解(Tensor Decomposition)_yixianfeng41的专栏-CSDN博客_张量分解7、浅谈张量分解(四):外积、Kronecke
2021-11-18 21:45:47 1454
转载 怎么判断一个优化问题是凸优化还是非凸优化?
https://www.zhihu.com/question/334515180/answer/762727073
2021-11-18 20:14:59 958
原创 张量学习笔记 | 用matlab实现HOSVD
应用matlab tensor toolbox 实现HOSVD(高阶奇异值分解)推荐系统_Molly-CSDN博客
2021-11-18 20:07:36 3699 3
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人