Python接口自动化测试数据驱动DDT使用实战

前言

环境准备 首先,需要安装ddt模块

pip install ddt

调用时标准格式 在类下面如下写上:@ddt.ddt 在调用的方法下面需要写上:@ddt.data(需要传入的多组数据)

DDT简单介绍 名称: Data-Driven Tests,数据驱动测试。 作用: 由外部数据集合来驱动测试用例的执行。 核心的思想:数据和测试代码分离。 应用场景: 一组外部数据来执行相同的操作。 优点: 当测试数据发生大量变化的情况下,测试代码可以保持不变。 实际项目: excel存储测试数据,ddt读取测试数据到单元测试框架(测试用例中),输出到html报告。

一、数据驱动

就是数据的改变从而驱动自动化测试的执行,最终引起测试结果的改变。说的直白些,就是参数化的应用。

实现方式 老的实现方式中,对测试结果的解析和校验都是在各个 case 中做的, case 层的处理的逻辑较为混杂,可读性不强

新的实现方式中,case 层只需要调用下结果校验的方法,逻辑清晰

工具 数据驱动在自动化中起到了一个很重要的作用。它实现了一条case,多次执行。很多的接口测试工具,也都把数据驱动利用的淋漓尽致。就拿我们最熟悉的jmeter来说。它的数据驱动是依靠CSV文件(一种通用文本格式。常用于数据之间的转换。

一行就是一条数据,数据中多个值用“,”分割。)设置的,通过编写CSV表格,然后设置好对应的参数。在接口中调用这些参数所属的变量。即可实现数据驱动。

二、传递基础数据类型

# 导入ddt库下所有内容
  from ddt import *
  # 在测试类前必须首先声明使用 ddt
  @ddt
  class imoocTest(unittest.TestCase):
      # int
      @data(1, 2, 3, 4)
      def test_int(self, i):
          print("test_int:", i)
      # str
      @data("1", "2", "3")
      def test_str(self, str):
          print("test_str:", str)

测试结果

test_int: 1
test_int: 2
test_int: 3
test_int: 4
test_str: 1
test_str: 2
test_str: 3

包含知识点 想使用DDT首先要在单元测试类上面加上 @ddt

三、传递一个复杂的数据结构

from ddt import *
# 在测试类前必须首先声明使用 ddt
@ddt
class imoocTest(unittest.TestCase):
  tuples = ((1, 2, 3), (1, 2, 3))
  lists = [[1, 2, 3], [1, 2, 3]]
  # 元组
  @data((1, 2, 3), (1, 2, 3))
  def test_tuple(self, n):
      print("test_tuple", n)
  # 列表
  @data([1, 2, 3], [1, 2, 3])
  @unpack
  def test_list(self, n1, n2, n3):
      print("test_list", n1, n2, n3)
  # 元组2
  @data(*tuples)
  def test_tuples(self, n):
      print("test_tuples", n)
  # 列表2
  @data(*lists)
  @unpack
  def test_lists(self, n1, n2, n3):
      print("test_lists", n1, n2, n3)
  # 字典
  @data({'value1': 1, 'value2': 2}, {'value1': 1, 'value2': 2})
  @unpack
  def test_dict(self, value1, value2):
      print("test_dict", value1, value2)

测试结果

test_dict 1 2
test_dict 1 2
test_list 1 2 3
test_list 1 2 3
test_lists 1 2 3
test_lists 1 2 3
test_tuple (1, 2, 3)
test_tuple (1, 2, 3)
test_tuples (1, 2, 3)
test_tuples (1, 2, 3)

包含知识点 @unpack :当传递的是复杂的数据结构时使用。比如使用元组或者列表,添加 @unpack 之后, ddt 会自动把元组或者列表对应到多个参数上。字典也可以这样处理。

当没有加unpack时,test_case方法的参数只能填一个;如元组的例子。

当你加了unpack时,传递的数据量需要一致;如列表例子中,每个列表我都固定传了三个数据,当你多传或少传时会报错,而test_case方法的参数也要写三个,需要匹配上。

当传的数据是字典类型时,要注意每个字典的key都要一致,test_case的参数的命名也要一致;如字典的例子,两个字典的key都是value1和value2,而方法的参数也是。

当传的数据是通过变量的方式,如元组2、列表2,变量前需要加上*。

四、传递json文件

json文件

{
"first": [
  {
    "isRememberMe": "True",
    "password": "111111",
    "username": "root"
  },
  "200"
],
"second": [
  "{'isRememberMe': True, 'password': '1111111', 'username': 'root'}",
  "406"
],
"third": [
  1,
  2
],
"four": "123123"
}

单元测试类

from ddt import *
# 在测试类前必须首先声明使用 ddt
@ddt
class imoocTest(unittest.TestCase):
  @file_data('F:/test/config/testddt.json')
  def test_json(self, data):
      print(data)

测试结果

[{'isRememberMe': 'True', 'password': '111111', 'username': 'root'}, '200']
["{'isRememberMe': True, 'password': '1111111', 'username': 'root'}", '406']
[1, 2]
123123

五、传递Yaml文件

yaml文件

unsorted_list:
    - 10
    - 15
    - 12
  sorted_list: [ 15, 12, 50 ]

单元测试类

from ddt import *
# 在测试类前必须首先声明使用 ddt
@ddt
class imoocTest(unittest.TestCase):
  @file_data('F:/test/config/testddt.yaml')
  def test4(self, data):
      print("yaml", data)

测试结果

yaml [10, 15, 12]
yaml [15, 12, 50]

最后:下面是配套学习资料,对于做【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴我走过了最艰难的路程,希望也能帮助到你!【100%无套路免费领取

软件测试面试小程序

被百万人刷爆的软件测试题库!!!谁用谁知道!!!全网最全面试刷题小程序,手机就可以刷题,地铁上公交上,卷起来!

涵盖以下这些面试题板块:

1、软件测试基础理论 ,2、web,app,接口功能测试 ,3、网络 ,4、数据库 ,5、linux

6、web,app,接口自动化 ,7、性能测试 ,8、编程基础,9、hr面试题 ,10、开放性测试题,11、安全测试,12、计算机基础

  全套资料获取方式:点击下方小卡片自行领取即可

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值