题意很简单,就是要求满足a=kb+k(0<k<b)的(a,b)的数量,且1≤a≤x,1≤b≤y。目测是个很可搞的数学题,那么我们来胡乱分析一波。
假如没有k<b的限制。对于处于1到y范围内的每个b,它的贡献就是x/(b+1)。这个是可以用整除分块做的。
以防有人不知道(没有
什么是整除分块呢?就是因为从1到y枚举b肯定是不现实的,但我们可以注意到,因为这里的除是要向下取整,所以其实对于一个区间内的b,x/(b+1)的值应该都是一样的。那么我们只需要对于每个区间左端点计算出x/(b+1),再算出区间长度,相乘即为该区间的贡献,然后直接去计算下一个区间。而关于如何找区间端点,举几个数试一试也可以发现,每个区间的右端点显然是可以被整除的点。实现可以看下面的代码,由于此题有y的限制,而且是x/(b+1),而非x/b,所以跟纯整除分块板子略有区别。
回过头考虑本题还有k<b的限制。所以每个b的贡献其实是min(x/(b+1),b-1)。显然,b大到一定程度之后就都是取x/(b+1)了,只要找到分界点,分界点以前用求和公式,以后整除分块即可。分界点大概在b=sqrt(x+1)附近,记得不能大于y的限制。
#include<cstdio>
#include<cmath>
#include<algorithm>
#define ll long long
using namespace std;
const int N=100010;
int t,x,y,l,r;
ll ans;
inline int read(){
int x=0,f=