按照蒟蒻做题顺序来写的。也许会更新,咕咕咕。
M. Mistake
题意是有k组1-n的数,每组都满足m对先后次序关系,保持组内顺序不变地把k组混在一起,要求输出每个数来自第几组。
题目保证有解,所以其实根本不用管给出的次序关系。如果i在j之后,出现第a个i时一定至少出现过a个j,不然无解。所以对于每个i,第几次出现就输出几即可。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=500010;
int n,k,m,lst[N];
int main(){
scanf("%d%d%d",&n,&k,&m);
for(int i=1,a,b;i<=m;++i)scanf("%d%d",&a,&b);
memset(lst,0,sizeof lst);
for(int i=1,x;i<=n*k;++i){
scanf("%d",&x);
printf("%d ",(++lst[x]));
}
return 0;
}
B. Reverse Game
题意是给一个01串,两人轮流操作每次可以找到一个子串等于给出的四种串之一,对其翻转,不能操作的人输。
终止状态必然是所有0在所有1左边。如果只能选10这个串,大概就相当于一步一步移,而后三种都是一步相当于选10的两步。且只要当前和目标状态大于一次10串,后三个串一定至少有一个可在当前状态中找到。
所以其实就相当于两人轮流取数,可以取1或2,取完剩余0的人胜。结论就是判断初始状态和目标状态的差能不能被3整除。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
char str[1000010];
int l;
ll sum;
int main(){
scanf("%s",str+1);l=strlen(str+1);
sum=0;
for(int i=l,j=0;i>=1;--i)if(str[i]=='1'){sum+=1ll*(l-j-i);++j;}
if(sum%3)printf("Alice");
else printf("Bob");
return 0;
}
E. Divisible by 3
题意是给一组数,问有多少个子区间,区间内任意两不相同位置的数乘积之和能被3整除。
刚做完上一道…又是被3整除的问题…
首先肯定对3取个模,大数看着就烦(下面操作中的取模就在表述中省略了,默认随时取模)。然后看一下区间[i,j]取模的结果可以表示成什么:用sum[i]表示数列a的部分和,mul[i]表示sum[i-1]*a[i]的部分和,rem[i,j]=mul[j]-mul[i]-sum[i-1]*(sum[j]-sum[i])。中间有i和j的交叉项比较麻烦,但对3取模的话只有3种结果,可以按照sum[i-1]分类来算,每一次就都是线性的了。
我这个代码可能写得比较笨。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=500010;
int n,sum[N],mul[N],a1[N],tot[4];
ll ans;
inline int read(){
int x=0;char ch=getchar();
while(ch<'0'||ch>'9')ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x;
}
int main(){
n=read();
sum[0]=mul[0]=0;
for(int i=1;i<=n;++i){
a1[i]=read()%3;
sum[i]=(sum[i-1]+a1[i])%3;
mul[i]=(mul[i-1]+sum[i-1]*a1[i])%3;
}
ans=0;
//sum[i-1]==0
memset(tot,0,sizeof tot);
for(int i=1;i<=n;++i){
if(mul[i]==0)ans+=1ll*tot[0];
else if(mul[i]==1)ans+=1ll*tot[2];
else ans+=1ll*tot[1];
if(sum[i-1]==0)++tot[(3-mul[i])%3];
}
//sum[i-1]==1
memset(tot,0,sizeof tot);
for(int i=1,tmp;i<=n;++i){
if(a1[i]==1)tmp=tot[0],tot[0]=tot[1],tot[1]=tot[2],tot[2]=tmp;
else if(a1[i]==2)tmp=tot[0],tot[0]=tot[2],tot[2]=tot[1],tot[1]=tmp;
if(mul[i]==0)ans+=1ll*tot[0];
else if(mul[i]==1)ans+=1ll*tot[2];
else ans+=1ll*tot[1];
if(sum[i-1]==1)++tot[(3-mul[i])%3];
}
//sum[i-1]==2
memset(tot,0,sizeof tot);
for(int i=1,tmp;i<=n;++i){
if(a1[i]==2)tmp=tot[0],tot[0]=tot[1],tot[1]=tot[2],tot[2]=tmp;
else if(a1[i]==1)tmp=tot[0],tot[0]=tot[2],tot[2]=tot[1],tot[1]=tmp;
if(mul[i]==0)ans+=1ll*tot[0];
else if(mul[i]==1)ans+=1ll*tot[2];
else ans+=1ll*tot[1];
if(sum[i-1]==2)++tot[(3-mul[i])%3];
}
printf("%lld",ans+n);
return 0;
}
I. Modulo Permutations
题意是求有多少种1-n的排列,满足任意i,pi%pi+1<=2,尾连头。
可以发现如果一个数小于后面的数还要满足条件,那么这个数只能是1或2,其他数必须从大到小排。那么可以形象地理解为我们要将1-n分成从大到小的两段,分别以1和2结尾,然后将他们首尾相连连成环。显然,这两段有多少种分法再乘n就是答案,因为一个环有n个位置可切开。
从小到大地安排数字,若当前安排i,f[j]表示,和i不在同一段的最大的数是j的方案数。易见,j≠i-1时,f[j]在状态从i-1到i转换时不变。所以对每个i,我们只需要计算f[i-1]。由题意知,i下面的数必须可以被i或i-1或i-2整除。tot1[i]记录所有满足d|i的f[d]之和。一定要算完一个f[i]就往上更新tot1,不要需要时再试除向下统计,会T飞。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=1000010;
const ll mod=1e9+7;
int n;
ll f[N],cnt,tot,tot1[N];
int main(){
scanf("%d",&n);
if(n<=5){
if(n==1)printf("1");
else if(n==2)printf("2");
else if(n==3)printf("6");
else if(n==4)printf("16");
else if(n==5)printf("40");
}else{
f[1]=1,f[2]=1,f[3]=2;
memset(tot1,0,sizeof tot1);
for(int j=2;j*2<=n;++j)tot1[j*2]+=f[2];
for(int j=2;j*3<=n;++j)tot1[j*3]+=f[3];
for(int i=5;i<=n;++i){
tot=f[1]+f[i-2]+tot1[i]+tot1[i-1]+tot1[i-2];
if(!(i&1))--tot;
f[i-1]=tot%mod;
for(int j=2;j*(i-1)<=n;++j)tot1[j*(i-1)]+=f[i-1];
}
cnt=0;
for(int i=1;i<n;++i)cnt+=f[i];
cnt%=mod;
printf("%lld",cnt*n%mod);
}
return 0;
}