扩展欧几里得整理-1

重点 :求解最小正整数解

套用exgcd模板求得的是一组特殊解,但其实这一个方程式是有一个解系,在很多问题中是要你求得最小整数解

a,b>0时: 直接 

x=(x%b+b)%b;

即可,再代入解出y

a,b,存在负数时,

将b改为-b,再按套路求解

如:

            if(t<0)  
            t=-t;  
            x=(x%t+t)%t;  

模板

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
#include<stack>
using namespace std;
int m,n;
int gcd(int a,int b){
	return b == 0 ? a : gcd(b , a%b);
}
int exgcd(int a,int b,int &x,int &y){
	if(b==0){
		x=1; y=0; return a;
	}
	int r=exgcd(b,a%b,x,y);
	int t=x; x=y; y=t-a/b*y;
	return r;
} 
int main(){
	int a,b,c,x,y;
	while(cin>>a>>b){
		if(gcd(a,b)!=1) {
			cout<<"sorry"<<endl;
			continue;
		}
		exgcd(a,b,x,y);
		x=(x%b+b)%b;
		y=(1-a*x)/b;
		cout<<x<<" "<<y<<endl;
	}
	return 0;
}

即可,再代入解出y

a,b,存在负数时,

将b改为-b,再按套路求解

如:

阅读更多
个人分类: 算法模板
上一篇poj2115 C Looooops exGCD
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭