扩展欧几里得(新)

重新整理一下扩欧。
扩展欧几里得就是欧几里得算法也就是辗转相除法的扩展应用,扩展后的作用主要为求二元一次方程组的一个解。

基本原理

众所周知,一个式子是无法确定两个未知数的唯一值的,因此 exgcd 只能解出一种符合要求的解,但是因为有通解的存在,你可以由这个解推出其他所有的可能解。

先看看扩展的地方,欧几里得的原理是 gcd ⁡ ( a , b ) = gcd ⁡ ( b , a   m o d   b ) \gcd(a,b) = \gcd(b, a\bmod b) gcd(a,b)=gcd(b,amodb),设 gcd ⁡ ( a , b ) = d \gcd(a, b) = d gcd(a,b)=d 我们可以到一个式子 a x + b y = d ax + by = d ax+by=d(来自裴蜀定理),根据辗转相除法的原理,我们会不断将 a , b a,b a,b 辗转相除,直到一个数为 0 0 0(设这个数为 b ′ b' b),但此时上面的式子依旧成立,即 a ′ x ′ + 0 × y ′ = d a'x' + 0 \times y' = d ax+0×y=d,也就是 a ′ x ′ = d a'x' = d ax=d,根据辗转相除法的原理,此时 a ′ a' a 就是求得的最大公约数。此时我们就可以知道, a ′ x ′ = d a'x' = d ax=d 中的 x ′ x' x 应该为 1 1 1,而 y ′ y' y 可以为任意数( 0 0 0 乘任何数都是 0 0 0,一般取 0 0 0)。现在,你已经求出了一个符合的 x ′ , y ′ x',y' x,y,而这个值我们可以回代,就可以求出最初 a x + b y = d ax + by = d ax+by=d 中的 x , y x,y x,y

该怎么回代呢,这里比较抽象,我们想一想,辗转完一次后的 a ′ , b ′ a',b' a,b 分别等于多少呢?看看辗转相除法的代码。

int gcd(int a, int b)
{
	return b ? a : gcd(b, a % b);
}

可以发现我们向下传的 a ′ , b ′ a',b' a,b 其实就是 b , a   m o d   b b,a \bmod b b,amodb。那么我们等式 a ′ x ′ + b ′ y ′ = d a'x' + b'y' = d ax+by=d 就变为了, b x ′ + ( a   m o d   b ) y ′ = d bx' + (a \bmod b)y' = d bx+(amodb)y=d,我们也知道 a   m o d   b = a − ⌊ a b ⌋ × b a \bmod b = a - \lfloor \frac{a}{b} \rfloor \times b amodb=aba×b,那么式子就可以进一步化为
b x ′ + a y ′ − ⌊ a b ⌋ × b y ′ = d bx' + ay' - \lfloor \frac{a}{b} \rfloor \times by' = d bx+ayba×by=d
整理可得
a y ′ + b ( x ′ − ⌊ a b ⌋ y ′ ) = d ay' + b(x' - \lfloor \frac{a}{b} \rfloor y') = d ay+b(xbay)=d
而我们之前的式子有
a x + b y = d ax + by = d ax+by=d
这就产生对应关系了,如果我们知道一种 x ′ , y ′ x',y' x,y 的值,就可以求出一种 x , y x,y x,y 的值,对应关系即为
x = y ′ y = x ′ − ⌊ a b ⌋ y ′ \begin{aligned} x &= y' \\ y &= x' - \lfloor \frac{a}{b} \rfloor y' \end{aligned} xy=y=xbay
还记得上面说的,我们可以求出最后一个 x ′ , y ′ x',y' x,y 的值吗,既然有了关系,那么就可以回代了。

代码实现

然后就是代码中的实现方式,为了把后面的 x ′ , y ′ x',y' x,y 传上来,我们需要用取址,在最后还要特判 b = 0 b = 0 b=0 时,把此时的 x , y x,y x,y 赋值。对于之前的 x , y x,y x,y 我们就根据关系来求出即可,而这一步,就是本文重点。

我们可以写出如下代码

int exgcd(int a, int b, int &x, int &y)
    {
        if (b == 0)
        {
            x = 1;
            y = 0;
            return a;
        }
        int d = exgcd(b, a % b, x, y);
        int tx = x, ty = y; // 即x',y'
        y = tx - a / b * ty;
        x = ty;
        return d;
    }

但实际上代码还可以精简,因为是用传址带回来的 x ′ , y ′ x',y' x,y,在当前 x , y x,y x,y 还没更新时,有 x = x ′ x = x' x=x y = y ′ y = y' y=y,这样的关系,因此可以直接用 x , y x,y x,y 代替代码中 t x , t y tx,ty tx,ty,则有新代码

int exgcd(int a, int b, int &x, int &y)
{
	if (b == 0)
	{
		x = 1;
		y = 0;
		return a;
	}
	int d = exgcd(b, a % b, x, y);
	int t = y;
	y = x - a / b * t;
	x = t;
	return d;
}

但这还不是我们最常用的,众所周知,辗转相除法在代码实现上为了让 a , b a,b a,b 互换位置辗转相除,在递归上是 gcd(b, a % b),而不是 gcd(a % b, b)。这里我们可以借鉴思想,把扩展欧几里得里面的 x , y x,y x,y 在递归下一层时换位。这样有什么好处?此时
x = y ′ , y = x ′ x = y',y = x' x=y,y=x
在求出当前 x , y x,y x,y 时就变成了
x = y ′ = x y = x ′ − ⌊ a b ⌋ y ′ = y − ⌊ a b ⌋ x \begin{aligned} x &= y' = x \\ y &= x' - \lfloor \frac{a}{b} \rfloor y' = y - \lfloor \frac{a}{b} \rfloor x \end{aligned} xy=y=x=xbay=ybax
你会发现, x x x 我直接不用变了,而 y y y 我直接自减即可,不用定义新变量,更简洁,于是得到了代码

int exgcd(int a, int b, int &x, int &y)
{
	if (b == 0)
	{
		x = 1;
		y = 0;
		return a;
	}
	int d = exgcd(b, a % b, y, x);
	y -= a / b * x;
	return d;
}

而这就是我们最常用的扩展欧几里得代码。

至此,本文结束。

  • 16
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值