在pytorch中将数据打包为DataLoader后每个epoch中的打乱策略

在pytorch中将数据打包为DataLoader后每个epoch中的打乱策略

有两种打乱策略:

1、利用shuffle

在 PyTorch 中,当使用 DataLoader 并设置 shuffle=True 时,数据会在每个 epoch 开始时被重新打乱。这意味着在每个 epoch,数据加载的顺序都会不同,这有助于模型避免对特定的数据顺序产生过拟合。

    train_loader = DataLoader(dataset=train_dataset, 
                              batch_size=batch_size, 
                              shuffle=True, 
                              num_workers=0)

在这种情况下,每次开始一个新的 epoch 并从 train_loader 中迭代数据时,train_loader 会自动将数据集中的数据打乱。这是一种常见的做法,用于确保模型接收到的数据顺序在每个 epoch 都是随机的,从而帮助模型更好地泛化。

如果 shuffle 参数被设置为 False,则数据加载的顺序在每个 epoch 中保持不变。这种情况通常用于那些需要保持数据顺序的场合,比如时间序列数据处理。

2、利用SubsetRandomSampler

在这种方法中,DataLoader 实例是通过使用 SubsetRandomSampler 创建的,这与直接在 DataLoader 中设置 shuffle=True 有所不同。当使用 SubsetRandomSampler 时,数据集的划分是固定的,但是在这个子集内的数据在每个 epoch 开始时会被重新打乱。

    train_data = torch.FloatTensor(train_data)

    train_data = TensorDataset(train_data, train_data)

    num_train = len(train_data)
    indices = list(range(num_train))
    np.random.shuffle(indices)
    split = int(np.floor(num_train * valid_size))

    train_idx, valid_idx = indices[split:], indices[:split]

    train_sampler = SubsetRandomSampler(train_idx)
    valid_sampler = SubsetRandomSampler(valid_idx)

    train_loader = torch.utils.data.DataLoader(dataset=train_data,
                                               batch_size=batch_size,
                                               sampler=train_sampler,
                                               # shuffle = True,
                                               num_workers=0)

    valid_loader = torch.utils.data.DataLoader(dataset=train_data,
                                               batch_size=batch_size,
                                               sampler=valid_sampler,
                                               # shuffle = True,
                                               num_workers=0)

在这种情况下,train_loader 和 valid_loader 使用 SubsetRandomSampler,它在每个 epoch 开始时会在其所对应的索引子集(train_idx 或 valid_idx)内部重新打乱数据。因此,尽管整个数据集的划分(训练集和验证集的分割)是固定的,但在每个 epoch 中,数据加载的顺序在各自的子集内是随机的。

这种方法结合了固定的训练/验证划分和每个 epoch 的内部随机性,有助于模型的泛化,同时保持了对训练和验证数据集的稳定划分。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Dataset 和 DataLoaderPyTorch 用于加载和处理数据的两个主要组件。Dataset 用于从数据提取和加载数据DataLoader 则用于将数据转换为适合机器学习模型训练的格式。 ### 回答2: 在PyTorchDataset和DataLoader是用于处理和加载数据的两个重要类。 Dataset是一个抽象类,用于表示数据集对象。我们可以自定义Dataset子类来处理我们自己的数据集。通过继承Dataset类,我们需要实现两个主要方法: - __len__()方法:返回数据集的大小(样本数量) - __getitem__(idx)方法:返回索引为idx的样本数据 使用Dataset类的好处是可以统一处理训练集、验证集和测试集等不同的数据集,将数据进行一致的格式化和预处理。 DataLoader是一个实用工具,用于将Dataset对象加载成批量数据数据加载器可以根据指定的批大小、是否混洗样本和多线程加载等选项来提供高效的数据加载方式。DataLoader是一个可迭代对象,每次迭代返回一个批次的数据。我们可以通过循环遍历DataLoader对象来获取数据。 使用DataLoader可以实现以下功能: - 数据批处理:将数据集划分为批次,并且可以指定每个批次的大小。 - 数据混洗:可以通过设置shuffle选项来随机打乱数据集,以便更好地训练模型。 - 并行加载:可以通过设置num_workers选项来指定使用多少个子进程来加载数据,加速数据加载过程。 综上所述,Dataset和DataLoaderPyTorch用于处理和加载数据的两个重要类。Dataset用于表示数据集对象,我们可以自定义Dataset子类来处理我们自己的数据集。而DataLoader是一个实用工具,用于将Dataset对象加载成批量数据,提供高效的数据加载方式,支持数据批处理、数据混洗和并行加载等功能。 ### 回答3: 在pytorchDataset是一个用来表示数据的抽象类,它封装了数据集的访问方式和数据的获取方法。Dataset类提供了读取、处理和转换数据的功能,可以灵活地处理各种类型的数据集,包括图像、语音、文本等。用户可以继承Dataset类并实现自己的数据集类,根据实际需求定制数据集。 Dataloader是一个用来加载数据的迭代器,它通过Dataset对象来获取数据,并按照指定的batch size进行分批处理。Dataloader可以实现多线程并行加载数据,提高数据读取效率。在训练模型时,通常将Dataset对象传入Dataloader进行数据加载,并通过循环遍历Dataloader来获取每个batch的数据进行训练。 Dataset和Dataloader通常配合使用,Dataset用于数据的读取和预处理,Dataloader用于并行加载和分批处理数据。使用Dataset和Dataloader的好处是可以轻松地处理大规模数据集,实现高效的数据加载和预处理。此外,Dataset和Dataloader还提供了数据打乱、重复采样、数据划分等功能,可以灵活地控制数据的访问和使用。 总之,Dataset和Dataloaderpytorch重要的数据处理模块,它们提供了方便的接口和功能,用于加载、处理和管理数据集,为模型训练和评估提供了便利。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值