UVA11134_Fabled Rooks

大概题意:

在n*n的棋盘上面放n个车,能否使他们互相不攻击(即不能在同一行一列),并且第i个车必须落在第i的矩形范围(xl,yl, xr,yr)之内

xy互相并不干扰,所以就可以把这个二维问题压缩成一维的,即在x轴能否让第i个点落在第i个区间内,如果x或y轴不存在这样放法,那么二维肯定也不可以!!!

当我们转换成一维问题之后,便是一个很经典的区间贪心模型了

贪心策略就是,区间右界越小优先级越高,相同条件下左界越大优先级越高

把这些区间排序之后,如何选取才能保证最优???

其实这一类大题,贪心策略就是尽量自己用到自己特有的别人可能用不到的

也就是从右界往左不断取,这样的话,优先级比他低的(优先级低表示要么左界比他小,要么右界比他大,这两种情况都能保证有解),若能取则一定可以取到

这题就是告诉我们,有时候,我们所解决的问题,看似密不可分,其实完全可以向那个高数中求两个变量的积分一样,把他们拆分成完全不干扰的两个问题

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<cstdlib>
#include<algorithm>
#include<stack>
#include<map>
#include<queue>
#include<vector>
using namespace std;
const int maxn = 1e5+100;
#define pr(x) cout << #x << " = " << x << " ";
#define prln(x) cout << #x << " = " << x <<endl;
typedef long long ll;
bool vis[maxn];
int n;
struct node
{
    int l,r,num;
    node():l(0),r(0),num(0){}
    bool operator < (const node& rhs)const
    {
        return r < rhs.r || (r == rhs.r && l < rhs.l);
    }
}x[maxn],y[maxn];
bool slove(int* a,node* q)
{
    memset(a, 0, sizeof a);
    memset(vis, 0, sizeof vis);
    for(int i = 0; i < n; ++i)
    {
        for(int j = q[i].l; j <= q[i].r; ++j)
        {
            if(!vis[j])
            {
                a[q[i].num] = j;
                vis[j] = 1;
                break;
            }
            if(j == q[i].r)
            {
               // pr(q[i].num);pr(q[i].l);prln(q[i].r);
                return false;
            }
        }
    }
    return true;
}
int main(){
#ifdef LOCAL
    freopen("in.txt","r",stdin);
   // freopen("out.txt","w",stdout);
 #endif
    int a[maxn],b[maxn];
    while(cin >> n && n)
    {
        for(int i = 0; i < n; ++i)
        {
            scanf("%d%d%d%d",&x[i].l,&y[i].l,&x[i].r,&y[i].r);
            x[i].num = y[i].num = i;
        }
        sort(x, x + n);sort(y, y + n);
        if(slove(a,x)&&slove(b,y))
        {
            for(int i = 0; i < n; ++i)
            printf("%d %d\n",a[i], b[i]);
        }
        else
        {
            printf("IMPOSSIBLE\n");
        }
    }
    return 0;
}



阅读更多
版权声明:欢迎转载,转载时请注明出处 https://blog.csdn.net/xfzero/article/details/48305173
文章标签: 贪心策略
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭