24、因果域泛化:数据增强与因果表示方法

因果域泛化:数据增强与因果表示方法

1. 反事实特征的数据增强

在机器学习中,为了让模型更好地泛化,常采用将输入分解为因果和非因果特征的方法。这个过程迫使模型依靠目标的特征来关联相应的标签。例如,在提高人体姿态检测的泛化能力时,有人借助基于生成对抗网络(GAN)的架构,从真实姿态和随机噪声中学习反事实的分布。同时,使用特征提取编码器获取输入图像的观测特征表示分布。最后,将反事实和观测表示输入到预测器中,以确保高预测能力。预测器会借助 $l_1$ 距离来最小化观测和反事实表示之间的距离。

整体的目标函数如下:
$$
\min_{\theta_f, \theta_h} \mathbb{E} {(x,y,u) \sim (p(x),p(y),p(u))} \left[ \mathcal{L}_F (h(f(x)), y) + \lambda_1 \mathcal{L} {CF} (h(g(u, y)), y) + \lambda_2 \mathcal{L} {dist} (f(x), g(u, y)) \right]
$$
其中,$\mathcal{L}_F$ 和 $\mathcal{L}
{CF}$ 分别表示观测和反事实表示的预测损失,$f$ 和 $g$ 表示表示层,$\lambda_1$ 和 $\lambda_2$ 是超参数。

2. 基于梯度的数据增强

基于梯度的数据增强是另一种用于域泛化的数据增强技术。它通过对原始数据点施加小的扰动,并利用机器学习模型的梯度来引导这些扰动,从而人为地增加数据集的大小。具体操作步骤如下:
1. 在数据集上训练一个机器学习模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值