[ZJOI2008]骑士 基环树树形DP

Description
给你n个节点,第i个节点不能与b[i]共存,权值为a[i],让你求一个集合使这个集合点权最大。


Sample Input
3
10 2
20 3
30 1


Sample Input
30


看到这道题首先会想到没有上司的晚会那题。
然后考虑做树形DP,然后我就不会做了,因为他有环。。。
然后我就上网查到了基环树这个东西,膜了一波。
你想这个图实际上是个无向图,且一个联通分量只存在一个环。
你把这个环其中的一条边断开,以断开的边的两个端点分别为根去做树形DP,且另一个端点不可存在,然后就像没有上司的晚会做。


#include <cstdio>
#include <cstring>
#include <climits>

using namespace std;
typedef long long LL;
const LL inf = LLONG_MAX;
int read() {
    int x = 0, f = 1; char ch = getchar();
    while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
    while(ch >= '0' && ch <= '9'){x = x * 10 + ch - '0'; ch = getchar();}
    return x * f;
}
LL _max(LL x, LL y) {return x > y ? x : y;}

struct edge {
    int x, y, next;
} e[2100000]; int len, last[1100000];
int now, v[1100000], a[1100000], fa[1100000];
int cutnow, cutk; LL dp[1100000][2];
int list[1100000];

void ins(int x, int y) {
    e[++len].x = x; e[len].y = y;
    e[len].next = last[x]; last[x] = len;
}

void dfs(int x, int fa) {
    dp[x][1] = (LL)a[x];
    for(int k = last[x]; k; k = e[k].next) {
        int y = e[k].y;
        if(y == fa || k == cutk || ((k - 1) ^ 1) + 1 == cutk) continue;
        dfs(y, x);
        dp[x][1] += dp[y][0];
        dp[x][0] += _max(dp[y][0], dp[y][1]);
    }
    if(x == cutnow) dp[x][1] = -inf;
}

LL bfs(int st) {
    int head = 1, tail = 2;
    list[1] = st; v[st] = now; fa[st] = 0;
    int cutx = -1, cuty = 0;
    while(head != tail) {
        int x = list[head];
        for(int k = last[x]; k; k = e[k].next) {
            int y = e[k].y;
            if(fa[x] == y) continue;
            if(v[y] == now) {cutx = x; cuty = y; cutk = k; continue;}
            v[y] = now; fa[y] = x;
            list[tail++] = y;
        }
        head++;
    }
    LL max1, max2;
    memset(dp, 0, sizeof(dp));
    cutnow = cuty; dfs(cutx, 0); max1 = _max(dp[cutx][1], dp[cutx][0]);
    memset(dp, 0, sizeof(dp));
    cutnow = cutx; dfs(cuty, 0); max2 = _max(dp[cuty][1], dp[cuty][0]);
    return _max(max1, max2);
}

int main() {
    int n = read();
    for(int i = 1; i <= n; i++) {
        a[i] = read(); int x = read();
        ins(i, x); ins(x, i);
    }
    LL ans = 0; now = 0;
    for(int i = 1; i <= n; i++) {
        if(!v[i]) {
            now++;
            ans += bfs(i);
        }
    }
    printf("%lld\n", ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值