机器学习实战:python算法代码汇总

这是是在学习《机器学习实战》这本书时的代码记录情况,用python实现,当然也会包括一些其他的机器学习算法,使用Python实现。



1:【关联规则】Apriori算法分析与Python代码实现,具体分析请参考博客:
http://blog.csdn.net/gamer_gyt/article/details/51113753

2:【关联规则】FP-Tree算法分析与Python代码实现,具体分析请参考博客:
http://blog.csdn.net/gamer_gyt/article/details/51113753

3:【决策树算法】基于信息论的三种决策树算法之ID3算法分析与Python代码实现,具体分析请参考博客:
http://blog.csdn.net/gamer_gyt/article/details/51242815

4:【聚类算法】二分-kMeans算法(二分K均值聚类)分析与Python代码实现,具体分析请参考博客:
http://blog.csdn.net/gamer_gyt/article/details/48949227

5:【回归算法】Logistic回归算法分析与Python代码实现,具体分析请参考博客:
http://blog.csdn.net/gamer_gyt/article/details/51236978
http://blog.csdn.net/gamer_gyt/article/details/51242150

6:【分类算法】AdaBoost算法分析与Python代码实现,具体分析请参考博客:
http://blog.csdn.net/gamer_gyt/article/details/51372309

7:【分类算法】朴素贝叶斯算法分析与Python代码实现,具体分析请参考博客:
http://blog.csdn.net/gamer_gyt/article/details/47205371
http://blog.csdn.net/gamer_gyt/article/details/47860945

8:【回归算法】预测数值型数据-回归(Regression)分析与Python代码实现,具体分析请参考博客:
http://blog.csdn.net/gamer_gyt/article/details/51405251

9:【降维技术】PCA降维技术分析与Python代码实现,具体分析请参考博客:
http://blog.csdn.net/gamer_gyt/article/details/51418069

10:【推荐系统】基于标签的推荐系统,具体分析请参考博客:
http://blog.csdn.net/gamer_gyt/article/details/51684716

11:【推荐系统】基于图推荐系统,具体分析请参考博客:
http://blog.csdn.net/gamer_gyt/article/details/51694250

12:【推荐系统】基于用户和Item的协同过滤推荐算法,具体分析请参考博客:
http://blog.csdn.net/gamer_gyt/article/details/51346159

13:基于随机变量的熵来进行数据建模和分析
http://blog.csdn.net/gamer_gyt/article/details/53729868

14:推荐算法的回顾总结
http://blog.csdn.net/gamer_gyt/article/details/74367714

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值