DANet: Dual Attention Network for Scene Segmentation

本文从增强全局的特征融合以及语义特征质之间的相关性为切入点,提出了Position Attetion 和 Channel Attention mechanism(位置注意力机制和通道注意力机制)的方法。 目前基于深度学习的语义分割网络采用multi scale融合或者U-Net的结构去融合低层和...

2019-03-15 16:31:00

阅读数 414

评论数 1

TensorRT保存序列化的结果

在上一篇博客中分析了tensorRT在加速caffe推断时的主要路程,其中序列化和反序列化是必不可少的。序列化时根据输入网络的prototxt和训练好的模型参数,对网络进行解析和参数保存,主要函数为: // serialize the engine, then close everything...

2018-10-02 16:40:40

阅读数 787

评论数 5

const关键字用法总结

const是编程过程中应该尽可能多使用的关键字,它指定一个不可变对象,编译器会强行执行这个约束,来增强的代码的健壮性。const可用来修饰变量、参数,函数返回值、函数本身,可谓多才多艺 。 1. const修饰变量 在Effective  C++条款2中讲到,尽量使用const声明常量来替换#...

2018-10-02 12:26:26

阅读数 73

评论数 0

TensorRT Inference过程详解

TensorRT可实现深度学习网络数倍的加速,特别是在嵌入式设备TX2上。TensorRT引擎和加速原理简介请查看https://blog.csdn.net/xh_hit/article/details/79769599。本文以caffe模型为例对其推断过程进行分析。 整体推断过程分为build...

2018-10-01 19:18:15

阅读数 2230

评论数 1

多头文件和源文件工程构建CMakeLists写法

1.最简单的CMakeLists.txt如下,只有一个源文件: cmake_minimum_required (VERSION 2.6) #版本要求 project (Tutorial) #工程名称 add_executable(Tutorial t...

2018-10-01 18:15:47

阅读数 836

评论数 0

Cascade R-CNN:Delving into HIgh Quality Object Detection

本篇是2018CVPR收录的关于物体检测的文章,作者仔细分析目前物体检测框架中Iou阈值的选取对于物体定位精度和整体训练的影响。 Iou阈值直接影响训练阶段正负样本的划分,threshold太高,如0.7,正样本的质量越高,但是正样本的数量会急剧减少,加剧正负样本的不平衡,训练容易过拟合;thr...

2018-09-18 22:58:17

阅读数 118

评论数 0

DetNet: A Backbone network for Object Detection论文阅读记录

概述: DetNet: A Backbone network for Object Detection是ECCV2018收录的旷视的一篇物体检测的论文,其设计灵感源自图像分类与物体检测任务之间存在的落差。详细讲,DetNet 针对不同大小和尺度的物体而像 FPN 一样使用了更多的 stage;即...

2018-09-15 18:40:45

阅读数 250

评论数 0

Soft-NMS: Improving object detection with one line of code

Improving object detection with one line of code 是ICCV2017的文章,主要是优化解决目标检测后处理中非极大值抑制(NMS,Non Maximum Suppression)的问题。 NMS: 在解析本文主旨之前,先回顾下当前目标检测算法中必不...

2018-09-15 17:37:38

阅读数 177

评论数 0

卡尔曼滤波简介

2018-09-02 12:56:28

阅读数 116

评论数 0

链表创建与翻转

#include<iostream> using namespace std; typedef struct ListNode { int val; struct ListNode *next; ListNode(int x) : val(x)...

2018-08-18 21:26:51

阅读数 50

评论数 0

SENets:Squeeze-and-Excitation Networks 论文阅读

概述:本文ILSVRC 2017 classification的冠军之作,着重考察了深度卷积各通道间的关系,提出了Squeeze-and-Excitation结构,是网络结构设计的一种新的思想。基于目前主流的Inception或者ResNet结构,Squeeze-and-Excitation结构也...

2018-07-15 17:01:11

阅读数 493

评论数 0

PANet:Path Aggregation Network for Instance Segmentation论文阅读

概述本文出自于港中文和腾讯优图,是COCO2017 instance segmentation的冠军作品。作者针对Mask-RCNN做了部分改进,笔者认为其两大贡献在于:bottom-up path augmentation 以及adaptive feature pooling。Abstract:...

2018-07-14 18:34:05

阅读数 328

评论数 0

LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation论文阅读

概述取得了不错的效果,并兼顾的速度和准确性。以下是博主自己对于本文的拙见和翻译,不完全对,欢迎讨论。

2018-06-12 22:37:16

阅读数 171

评论数 0

PSPNet:Pyramid Scene Parsing Network论文阅读

概述这篇语义分割的论文出自于商汤,是ImageNet scene parsing challenge的冠军之作。作者将SPPNet中金字塔池化的方法用于语义分割,充分利用全局上下文(场景)信息,以及不同的局部子区域信息,取得很好的效果。以下是博主自己对于本文的拙见和翻译,不完全对,欢迎讨论。背景介...

2018-06-12 19:59:50

阅读数 195

评论数 0

Ubuntu查看文件夹下文件的个数

在深度学习训练时,需要统计训练集图片的个数,因为图片的文件名不是连续整数,所以不可能挨个数。因此可用以下命令:Linux下统计当前文件夹下的文件个数、目录个数查看当前目录下的文件数量(不包含子目录中的文件)ls -l|grep "^-"| wc -l查看当前目录...

2018-06-11 14:20:05

阅读数 4873

评论数 1

TensorRT Inference 引擎简介及加速原理简介

1.TensorRT简介 TensorRT是NVIDIA 推出的一款基于CUDA和cudnn的神经网络推断加速引擎,相比于一般的深度学习框架,在CPU或者GPU模式下其可提供10X乃至100X的加速,极大提高了深度学习模型在边缘设备上的推断速度。将TensorRT应用在NVIDIA 的TX1或者...

2018-03-31 19:40:39

阅读数 5310

评论数 0

cmake ubuntu卸载源码安装的cmake

cmake的版本在ubuntu编译程序时至关重要,特别是编译他人的工程时,有时必须保证cmake的版本与工程所有者相同。对于cmake的卸载问题,现在一般博客中给的指导是:sudo apt-get remove cmake但是此句指令是针对于通过sudo apt-get install cmake...

2018-03-21 14:57:10

阅读数 3352

评论数 0

STDN:Scale-Transferrable Object Detection 论文阅读

概述这篇是CVPR 2018收录的上海交通大学电子系人工智能实验室物体检测方面的论文。博主认为此算法亦为SSD的改进分支,属于典型的one-stage物体检测模型,作者尝试通过尺度变换模块(scale-transfer module )去解决物体检测中不同目标检测时的尺度问题,取得了不错的效果,并...

2018-03-11 11:36:06

阅读数 3612

评论数 1

TX2安装cuda8.0搭建深度学习部署环境 CUDA cannot be installed on the device

2018-02-08 09:50:17

阅读数 3396

评论数 2

提示
确定要删除当前文章?
取消 删除
关闭
关闭