题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=3240
卡特兰数递推公式h(i)=h(i-1)*(4*i-2)/(i+1)
如果直接算每一步,然后modm的话,有错误,因为h(i-1)%m后,h(i-1)*(4*i-2)不一定能整除(i+1),所以不行。
其实只需要把答案看做两部分的乘积:一部分是与m互素的,这一部分的乘法直接计算,除法改成乘逆元就行了;另一部分是若干个m的素因子的乘积,因为m<1,000,000,000,所以m的不同素因子不会太多,用一个数组记录每一个素因子的数量就行。这一部分的乘法就是把记录的素因子数量相加,除法就是把记录的素因子数量相减。最后计算这两部分的乘积对m的取模,也就是h(n)%m。
代码如下:
#include <iostream>
#include <vector>
#include <list>
#include <deque>
#include <queue>
#include <iterator>
#include <stack>
#include <map>
#include <set>
#include <algorithm>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <cmath>
using namespace std;
const int N=10001;
typedef long long LL;
int su[N],num[N];
int n,m,sui;
void mul(LL &res,int k)
{
for(int i=0;i<sui;i++)
{
while(k%su[i]==0)
{
k/=su[i];
num[i]++;
}
}
res=(res*k)%m;
}
int ext_gcd(int a,int b,int &x,int &y)
{
int t,ret;
if(!b)
{
x=1;y=0;return a;
}
ret=ext_gcd(b,a%b,y,x);
y-=x*(a/b);
return ret;
}
void chu(LL &res,int k)
{
for(int i=0;i<sui;i++)
{
while(k%su[i]==0&&num[i]>0)
{
k/=su[i];
num[i]--;
}
}
if(k!=1)
{
int x,y,temp;
temp=ext_gcd(k,m,x,y);
x=(x%m+m)%m;
res=(res*x)%m;
}
}
int main()
{
int i,j,k,t;
while(scanf("%d%d",&n,&m)&&(n+m))
{
sui=0,t=m;
for(i=2;i*i<=t;i++)
if(t%i==0)
{
su[sui++]=i;
while(t%i==0)
t/=i;
}
if(t>1)
su[sui++]=t;
memset(num,0,sizeof(num));
LL res=1,sum=1,l;
for(i=2;i<=n;i++)
{
mul(res,4*i-2);
chu(res,i+1);
l=res;
for(j=0;j<sui;j++)
for(k=0;k<num[j];k++)
l=l*su[j]%m;
sum=(sum+l)%m;
}
printf("%lld\n",sum);
}
return 0;
}