数列极限(一)

求极限

limn1nn12+23++nn+1n.

解.
利用

1+12+13++1n=lnn+γ+o(1),n.

其中, γ 是 Euler 常数。

Hn=1+12+13++1n,


Hn=lnn+γ+o(1),n.


=====1nn12+23++nn+1n1n(nnHn+1+1)n1n(nn(ln(n+1)+γ1+o(1)))nenln(1ln(n+1)+γ1+o(1)n)lnneln(n+1)+γ1+o(1)lnneγ1+o(1)

因此
limn1nn12+23++nn+1n=eγ1.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值