求极限
limn→∞1n⎛⎝n12+23+⋯+nn+1⎞⎠n.
解.
利用
1+12+13+⋯+1n=lnn+γ+o(1),n→∞.
其中, γ 是 Euler 常数。
记
Hn=1+12+13+⋯+1n,
则
Hn=lnn+γ+o(1),n→∞.
故
=====1n⎛⎝n12+23+⋯+nn+1⎞⎠n1n(nn−Hn+1+1)n1n(nn−(ln(n+1)+γ−1+o(1)))ne−nln(1−ln(n+1)+γ−1+o(1)n)−lnneln(n+1)+γ−1+o(1)−lnneγ−1+o(1)
因此
limn→∞1n⎛⎝n12+23+⋯+nn+1⎞⎠n=eγ−1.□