MIT 公开课:Gilbert Strang《线性代数》课程笔记(汇总)
Lecture 6: Column space and nullspace
课程 6:列空间和零空间
子空间(Subspace)
设非空集合 S⊂Rn ,且 S 中的元素对加法和数乘封闭(即,对任意的 u,v∈S,u+v∈S,λu∈S,λ 是常数),则 S 是 Rn 的子空间。
设 V,W
本文介绍了线性代数中两个关键概念——列空间和零空间。列空间是指矩阵A的所有列向量的线性组合构成的线性空间,它决定了线性方程组Ax=b的解的存在条件。零空间则是线性方程组Ax=0的解集,也是一个线性空间。这两个概念是理解子空间及其性质的基础。
MIT 公开课:Gilbert Strang《线性代数》课程笔记(汇总)
Lecture 6: Column space and nullspace
课程 6:列空间和零空间
子空间(Subspace)
设非空集合 S⊂Rn ,且 S 中的元素对加法和数乘封闭(即,对任意的 u,v∈S,u+v∈S,λu∈S,λ 是常数),则 S 是 Rn 的子空间。
设 V,W
2079
612
3449

被折叠的 条评论
为什么被折叠?