线性代数 --- Matrix A的零空间(Null space)与列空间(Column space)

“空间”这一概念的引入,可以帮助我们从另一个角度去理解Ax=b。

C(A):A的列空间,即,A的值域

        若Ax=b有解(对于给定的一个b),说明,b是A中各列的线性组合,其中x即为各列的权重。通常,我们所求解的方程Ax=b中的b只是A中各列的一种线性组合的结果。如果我们不断的调整权重x,就会得到各式各样的结果b。用专业术语说就是通过不同的线性组合得到了很多的b。重点来了,如果我们把所有可能的线性组合都考虑进去的话,就得到了A的列空间(column space of A)。列空间是由A中所有列向量,通过一切可能的线性组合,组成的一个向量空间。也可以说A的列空间C(A)是由A中的各列所张成(span)的。

        A的列空间是线性代数中的重中之重,why?整个线性代数都是在求解Ax=b,也就是找到一个列向量(col vectors of A)的线性组合来表达b。而,从空间的角度来考虑的话,对于Ax=b,如果向量b在A的列空间内,就有解,如果不在就无解。

         如果A是一个mxn的矩阵,那么他的列空间就有m个components(而不是n个)。因此,它属于R^{m}A的列空间C(A)是R^{m}的子空间。(这里加一点我自己个人的理解,因为列空间是由A中的各列通过加加减减所组成的,所以A中的每一列有多少个元素,所合成的b就有多少个元素,所以是R)

        例如下面这个3x2的矩阵A,他的列空间C(A)就是R^{3}的一个子空间。

\left\{\begin{matrix} x_{1}=b1 & \\ 4x_{1}+3x_{2}=b2 & \\ 2x_{1}+3x_{2}=b3 & \end{matrix}\right.

         A中的两个列向量col1[1 4 2]'和col2[0 3 3]'所有的线性组合在R^{3}内组成了一个平面(该平面的厚度为0)。我们令权重向量x=[0.4 0.3]'得到了一个向量b=[0.4 2.5 1.7],向量b在列空间C(A)上。如果说,b可以是R^{3}内的任意一个向量,从图上可以看到,能够落在平面C(A)上的b, 也就是这个厚度为0平面,只是R^{3}的一小部分。这说明,只有很少的b=[b1 b2 b3]',能够满足这个方程组。 

 说到这里,我再对本例的列空间C(A)做一点补充。

1,col1和col2所组成的列空间存在一个隐含的列向量[0 0 0]’,他即在C(A)内,也R^{3}内。

2,当权重向量x=[0 1]'时,得到列向量col2。

3,当权重向量x=[1 0]'时,得到列向量col1。

        最后,学习和了解A的列空间,并不是说对于我们方程Ax=b有帮助,而是对于我们理解方程Ax=b有很多的帮助,他提供了一个全新的视角,也让我们对于他的理解,提升了一个高度。

以下为个人的学习笔记:

 (注意看我笔记中的红字部分)

列空间的两个特殊情况:全零矩阵和单位矩阵的列空间

1,全零矩阵:

        如果矩阵A是一个nxn的全零矩阵。那么他各个列向量的线性组合的结果只可能得到n维向量b(0,0,0,。。。,0),这里我暂且称它为零向量。如果令两个零向量相加还是等于零向量,[0]+[0]=[0]。所以,他对向量相加是封闭的。因为,两个零向量相加的结果,依然还在零向量内。同时,零向量也满足数乘c[0]=[0],也就是说它对数乘也是封闭的。因此,我们可以说,全零矩阵A各列所构成的线性组合确实构成了一个向量空间,也就是他的列空间。这是最小的列空间

2,单位矩阵:

         如果矩阵A为nxn的单位矩阵,即A=I。它的列空间是整个n维空间R^{n}。因为,单位矩阵中的每一列,都是相互垂直的,也就是完全无关的。这里,可以考虑2x2的单位矩阵


\LARGE I=\begin{bmatrix} 1 &0 \\ 0&1 \end{bmatrix}

        他的第一列是[1 0]',第二列是[0 1]’。此处n=2,在空间R^{2}内。第一列的列向量就好像是y轴上的一个单位向量,始于原点(x=0,y=0),终于(x=0,y=1)。同理,第二个列向量是x轴上的一个单位向量。始于原点(x=0,y=0),终于(x=1,y=0)。因此,通过对这两个列向量线性组合,可以张成整个2维空间平面。(此处我们要限制每个分量都是实数。)

所有有解的,非齐次方程的右端b,都属于矩阵A(mxn)中各列所张成的列空间R^{m}


N(A):A的零空间,即,A的核

        如果说列空间的重点是所有可能存在的等式右端b的全部合集,那么零空间的重点则是对于已知的b,对于解x的探讨。但是要注意,这里我们只讨论齐次方程的解的情况,也就是b=0的情况。即,A的零空间是Ax=0的解的合集。同时,我们还会发现,对于一个mxn,也就是m个方程,n个未知数的方程,我们总能找到,Ax=0除了解x=0以外,一定还能找到其他的解。所有的这些解构成了A的零空间N(A)。再如,对于mxn的矩阵A,有n个未知数,x是一个属于R^{n}的n维向量,他所张成的空间是R^{n}的子空间。

现在我们还是回到前面的方程组:

\left\{\begin{matrix} x_{1}=b1 & \\ 4x_{1}+3x_{2}=b2 & \\ 2x_{1}+3x_{2}=b3 & \end{matrix}\right.

 把Ax=b换成Ax=0:

\left\{\begin{matrix} x1=0& & \\ 4x1+3x2=0& & \\ 2x1+3x2=0& & \end{matrix}\right.

用矩阵的形式表达: 

\LARGE [A][x]=\begin{bmatrix} 1 &0 \\ 4& 3\\ 2&3 \end{bmatrix} \begin{bmatrix} x1 \\ x2\\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0\\ 0 \end{bmatrix}

        求解Ax=0,得到平凡解x1=0,x2=0。 也就是说,这里,A的零空间里面只有一个二维向量,也就是零向量[0 0]’。

        如果,我们把原矩阵再加一列col3(对应的未知数也要多加一个),新的这一列col3等于第一列col1和第二列c0l2的和(如下)。注意,注意,这是非常非常关键的一步,是点睛之笔。他维持列空间不变,却改变了零空间。

\large B=\begin{bmatrix} 1& 0 & 1\\ 4& 3& 7\\ 2& 3& 5 \end{bmatrix}

        这样一来,由于第三列col3是前两列的线性组合,因此,原来的3x2矩阵A和新的3x3矩阵B,他们两个的列空间都是一样的。新增加的一列并没有对A的列空间产生影响。但是,这样一来,B的零空间就不同了,他使齐次方程又多了一个解比如[1 1 -1]'(其实不止一个)。也就是说,矩阵A的解x原来只有一个平凡解,零向量[0 0 0]’,变成矩阵B以后,现在又多了一个解向量[1 1 -1]',而且,更准确的说,我们可以把这个新的解向量写成cx[1 1 -1]=[c c -c],c是一个常数。

\large \begin{bmatrix} 1&0 &1 \\4 &3 &7 \\ 2& 3& 5\end{bmatrix} \begin{bmatrix} c \\c \\ -c\end{bmatrix} = \begin{bmatrix} 0\\0 \\ 0\end{bmatrix}

        又因为,c的取值可以从负无穷到正无穷,这样一来可以用解向量张成三维空间中的一条直线,他满足x=c,y=c,z=-c。又因为这是一条经过0点的直线(注意:这个条件非常重要,否则他就不是子空间),所以这条直线上所有的点构成了B的零空间N(B),是\large R^{3}的一个子空间。将来,我们还会看到,这条直线有一个垂直空间,这个垂直空间与矩阵的行有直接关系。

以下为个人的学习笔记:

(注意看我笔记中的红字部分:准确的说:“零空间是齐次方程组的解空间”) 

总而言之:

        1,对于任何一个拥有m个方程和n个未知数的方程组Ax=b,矩阵A中各列全部的线性组合构成了A的列空间。

        2,当b=0时,齐次方程组Ax=0的所有解,构成了A的零空间。

下图是我早期的笔记中对零空间和列空间的总结:

(全文完)

作者 --- 松下J27

参考文献(鸣谢)

1,Introduction to Linear Algebra - GILBERT STRANG

2,线性代数及其应用 - 侯自新,南开大学出版社,1990版

古诗词赏析:

观沧海---曹操

东临碣石,以观沧海。
水何澹澹,山岛竦峙。
树木丛生,百草丰茂。
秋风萧瑟,洪波涌起。
日月之行,若出其中;
星汉灿烂,若出其里。
幸甚至哉,歌以咏志。

 

(配图与本文无关)

版权声明:所有的笔记,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27

  • 11
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松下J27

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值