2013.9.20 晚上十点
问题:约瑟夫环
问题描述:
输入一个由随机数组成的数列(数列中每个数均是大于0的整数,长度已知),和初始计数值m。从数列首位置开始计数,计数到m后,将数列该位置数值替换计数值m,并将数列该位置数值出列,然后从下一位置从新开始计数,直到数列所有数值出列为止。如果计数到达数列尾段,则返回数列首位置继续计数。请编程实现上述计数过程,同时输出数值出列的顺序
比如:输入的随机数列为:3,1,2,4,初始计数值m=7,从数列首位置开始计数(数值3所在位置)
第一轮计数出列数字为2,计数值更新m=2,出列后数列为3,1,4,从数值4所在位置从新开始计数
第二轮计数出列数字为3,计数值更新m=3,出列后数列为1,4,从数值1所在位置开始计数
第三轮计数出列数字为1,计数值更新m=1,出列后数列为4,从数值4所在位置开始计数
最后一轮计数出列数字为4,计数过程完成。
输出数值出列顺序为:2,3,1,4。
要求实现函数:
void array_iterate(int len, intinput_array[], int m, int output_array[])
【输入】 int len:输入数列的长度;
int intput_array[]:输入的初始数列
int m:初始计数值
【输出】 int output_array[]:输出的数值出列顺序
【返回】无
示例:
输入:int input_array[] = {3,1,2,4},int len = 4, m=7
输出:output_array[] = {2,3,1,4}
代码:
#include <iostream>
#include <ctime>
#include <cstdlib>
#include <cassert>
using namespace std;
#define MAX 10
#define ARRSIZE 5
void Joseph_solution(intinput_arr[], int init_num, int ouput_arr[])
{
assert((input_arr != NULL) &&(ouput_arr != NULL) && (init_num > 0));
intlen=ARRSIZE;
intiChooseIdx = 0;
intiStartIdx = 0;
int idx=0;
while(len> 0)
{
iStartIdx=iChooseIdx;
iChooseIdx=(iStartIdx+(init_num-1)%len)%len;
init_num=input_arr[iChooseIdx];
ouput_arr[idx++]=init_num;
intj=iChooseIdx;
for(;j<len;++j)
{
input_arr[j]=input_arr[j+1];
}
len--;
}
}
int main(void)
{
int*input_arr=new int[ARRSIZE];
int*ouput_arr=new int[ARRSIZE];
srand((unsigned)time(NULL));
cout<<"处理前:"<<endl;
for(int i = 0; i < ARRSIZE;i++ )
{
input_arr[i]=rand()%MAX+1;
cout<<input_arr[i]<<" ";
}
cout<<endl;
cout<<"请输入初始值:"<<endl;
intinit_num;
cin>>init_num;
Joseph_solution(input_arr, init_num,ouput_arr);
cout<<"处理后:"<<endl;
for (int i=0; i<ARRSIZE; ++i)
{
cout<<ouput_arr[i]<<" ";
}
cout<<endl;
delete[]input_arr;
delete[]ouput_arr;
return 0;
}
问题关键点:iChooseIdx=(iStartIdx+(init_num-1)%len)%len;将原始数组看做一个首尾相连的链表处理,每一次找到对应位,就将该为的值取出赋给初始值,改变初始值(即改变下次寻值的长度),并将该值放于结果数组中,将该值从原有数组中提出