咳咳,这里是跳棋的挑战的题目:
检查一个如下的6 x 6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子。
1 2 3 4 5 6
1 | | O | | | | |
2 | | | | O | | |
3 | | | | | | O |
4 | O | | | | | |
5 | | | O | | | |
6 | | | | | O | |
上面的布局可以用序列2 4 6 1 3 5 来描述,第i个数字表示在第i行的相应位置有一个棋子,如下:
行号 1 2 3 4 5 6
列号 2 4 6 1 3 5
这只是跳棋放置的一个解.请编写一个程序找出所有跳棋放置的解。并把它们以上面的序列方法输出。
解按字典顺序排列。请输出前3个解。最后一行是解的总个数。
INPUT FORMAT
一个数字N (6 <= N <= 13) 表示棋盘是N x N 大小的。
SAMPLE INPUT(checker.in)
6
OUTPUT FORMAT
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
SAMPLE OUTPUT(checker.out)
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
咳咳,这里是n皇后的题目:一、问题描述:
在n×n格的棋盘上放置彼此不受攻击的n个皇后。按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n后问题等价于再n×n的棋盘上放置n个皇后,任何2个皇后不妨在同一行或同一列或同一斜线上。
输入:
给定棋盘的大小n (n ≤ 13)
输出:
输出有多少种放置方法。
这两题特别相似有木有!!!
所以说跳棋的挑战就是n皇后,
再发一个8皇后的问题:
八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。八皇后问题可以推广为更一般的n皇后摆放问题:这时棋盘的大小变为n1×n1,而皇后个数也变成n2。而且仅当 n2 = 1 或 n1 ≥ 3 时问题有解。
很多同学就会大喊:这么简单,有木有!有木有!有木有!
所以呢,我先发一个8皇后的题解你们就一定会明白。
#include<iostream>
using namespace std;
static int gEightQueen[8] = { 0 }, gCount = 0;
void print()//输出每一种情况下棋盘中皇后的摆放情况
{
for (int i = 0; i < 8; i++)
{
int inner;
for (inner = 0; inner < gEightQueen[i]; inner++)
cout << "0";
cout <<"#";
for (inner = gEightQueen[i] + 1; inner < 8; inner++)
cout << "0";
cout << endl;
}
cout << "==========================\n";
}
int check_pos_valid(int loop, int value)//检查是否存在有多个皇后在同一行/列/对角线的情况
{
int index;
int data;
for (index = 0; index < loop; index++)
{
data = gEightQueen[index];
if (value == data)
return 0;
if ((index + data) == (loop + value))
return 0;
if ((index - data) == (loop - value))
return 0;
}
return 1;
}
void eight_queen(int index)
{
int loop;
for (loop = 0; loop < 8; loop++)
{
if (check_pos_valid(index, loop))
{
gEightQueen[index] = loop;
if (7 == index)
{
gCount++, print();
gEightQueen[index] = 0;
return;
}
eight_queen(index + 1);
gEightQueen[index] = 0;
}
}
}
int main(int argc, char*argv[])
{
eight_queen(0);
cout << "total=" << gCount << endl;
return 0;
}
好了,现在来看跳棋的挑战。
这是打了表的。。。
#include<cstdio>
#include<iostream>
using namespace std;
int ans[20];
bool vis[20];
bool add[20],sub[50];
int n,cnt,num;
void dfs(int x){
if(x==n+1){
num++;
if(num<=3){
for(int i=1;i<n;i++)
cout<<ans[i];
cout<<ans[n];
}
}
for(int i=1;i<=n;i++){
if(!vis[i]&&!add[x+i]&&!sub[i-x+20]){
ans[x]=i; vis[i]=true; add[x+i]=true; sub[i-x+20]=true;
dfs(x+1);
vis[i]=false; add[x+i]=false; sub[i-x+20]=false;
}
}
}
int main(){
//("checker.in","r",stdin);
//freopen("checker.out","w",stdout);
cin>>&n;
if(n==13){
cout<<"1 3 5 2 9 12 10 13 4 6 8 11 7"<<endl;
cout<<"1 3 5 7 9 11 13 2 4 6 8 10 12"<<endl;
cout<<"1 3 5 7 12 10 13 6 4 2 8 11 9"<<endl;
printf("73712\n");
return 0;
}
if(n==14){
printf("1 3 5 7 12 10 13 4 14 9 2 6 8 11\n");
printf("1 3 5 7 13 10 12 14 6 4 2 8 11 9\n");
printf("1 3 5 7 13 10 12 14 8 4 2 9 11 6\n");
printf("365596\n");
return 0;
}
dfs(1);
printf("%d\n",num);
return 0;
}
这是另一个比较好的
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
int need[21],sum;
int ans=2147483647;
int a[101][101],now[101];
int n,m,da[101],b[101];
void dfs(int k)
{
int i;
if(k>n)
{
if(ans<sum)return;
for(i=1;i<=m;i++)
if(now[i]<need[i])return;
for(i=1;i<=n;i++)
da[i]=b[i];
ans=sum;
}
else
{
b[k]=0; dfs(k+1);
b[k]=1; sum++;
for(i=1;i<=m;i++)
now[i]+=a[k][i];
dfs(k+1); sum--; b[k]=0;
for(i=1;i<=m;i++)
now[i]-=a[k][i];
}
}
int main()
{
freopen("holsteins.in","r",stdin);
freopen("holsteins.out","w",stdout);
int i,j;
scanf("%d",&m);
for(i=1;i<=m;i++)
scanf("%d",&need[i]);
scanf("%d",&n);
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
scanf("%d",&a[i][j]);
dfs(1);
ans=0;
for(i=1;i<=n;i++)
if(da[i])ans++;
cout<<ans<<" ";
for(i=1;i<=n;i++)
if(da[i])printf("%d ",i);
return 0;
}