一. 所谓有序的全排列
如输入不同的数字使其排列后从小到大顺序输出,如:
123
则可以输出如下组合
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
共六种情况
后面将问题简化一下,输入1-9代表不同的数字1~9,如输入4则对1234进行排序。
二. 有序全排列的思路
1. 数学法
观察a1,a2,a3,...,an的排列情况,假设我需要第k个排列结果。(注意:a1<a2<a3<...<an)
如果第一个元素a1不需要交换,一共有(n-1)!种排列,当k>(n-1)!时,第一个元素必定不是a1了,那会是哪个元素呢?
以这个元素为开头的排列 | 排列序号 |
a1 | 1~(n-1)! |
a2 | (n-1)!+1~2*(n-1)! |
an | (n-1)*(n-1)!+1~n! |
确定第一个元素后,下一层每个元素的范围则缩小到(n-2)!,而问题与上述无异,也就是说,可以利用这种规律,逐个元素求出这个排列。
假设数串为1234,总共有4!=24种排列情况,求第15种排列结果。
第一个元素则为[(15-1)/3!]+1=3,取1234中的第三个作为a1,k=15-6*2=3,未用元素为124
第二个元素则为[(3-1)/2!]+1=2,取124中的第二个作为a2,k=3-2*1=1,未用元素为14
由于为1,所以剩余的则为14顺序
结果为3214
我们按顺序写一下,确保准确无误
1234 | 1243 | 1324 | 1342 | 1423 | 1432 | 2134 | 2143 | 2314 | 2341 | 2413 | 2431 | 3124 | 3142 | 3214 | 3241 | 3412 | 3421 | 4123 | 4132 | 4213 | 4231 | 4312 | 4321 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
那么我们用代码把它实现即可(当然,你的实现方法可能更好,因为是很久前写的,将就着看吧)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int find_kth_element(int n, int kth, int **ans){
int *used;
int jiecheng, k, temp, ntemp=n, kk;
for(k=1, jiecheng=1; k<n-1; k++){
jiecheng *= (k+1);
}
used = (int*)malloc(sizeof(int)*n);
*ans = (int*)malloc(sizeof(int)*n);
memset(used, 0, sizeof(int)*n);
for(k=0; k<n; k++){
*(*ans+k) = k;
}
if(kth>jiecheng*n)
return -1;
n--; k=0; kth--;
while(1){
if(kth==0){
for(; k<ntemp; k++){
kk=0;
while(used[kk++]!=0);
used[kk-1] = 1;
*(*ans+k) = kk-1;
}
break;
}
temp=kth/jiecheng;
kk=0;
do{
while(used[kk++]!=0);
temp--;
}while(temp>=0);
*(*ans+k) = kk-1;
used[kk-1]=1;
kth = kth%jiecheng;
jiecheng = jiecheng/n;
n--; k++;
}
//free(used);
return 0;
}
int main(void){
int n, kth;
int *num, k, *ans=NULL;
printf("n="); scanf("%d", &n);
printf("kth="); scanf("%d", &kth);
num = (int*)malloc(sizeof(int)*n);
for(k=0; k<n; k++){
*(num+k) = k+1;
}
find_kth_element(n, kth, &ans);
for(k=0; k<n; k++){
printf("%d", *(num+*(ans+k)));
}
system("pause");
return 0;
}
2. 逐层排列法
思路:每层元素交换互不干扰的原则,每层第一个元素与第一个元素、第二个元素。。。交换元素,并保存该层交换结果,直至交换到第n个元素。
以1234为例
第一层为1234 位置1与位置1的元素交换(后面简写成1<->1),得到1234,进入第二层(234), 1<->1,得到234,进入第三层(23),1<->1,得到34, 进入第四层(4),1<->1,得到4,所以,第一个排列结果为1234;
第四层继续交换,1<->2,超出元素个数,返回第三层(34),1<->2,得到43,同样进入第四层(3),。。。得到第二个排列结果为1243;
第四层继续交换,1<->2,超出元素个数,返回第三层(43),1<->3,超出元素个数,返回第二层(234),1<->2,得到324,然后进入第三层(24)。。。得到第三个排列结果1324,紧接着是1342;
在退回第二层(324),当时记录结果是324,那么现在要1<->3,得到423,再进入第三层(23),依次得到1423 1432;
退回第二层,此时1<->4,超出元素个数,返回第一层(1234),1<->2,得到2134,进入第二层(134),从1<->1开始排列,依次得到2134 2143 2314 2341 2413 2431;
返回第一层(2134),1<->3,得到3124,然后依次得到2134 2143 2314 2341 2413 2431
返回第一层(3124),1<->4,得到4123,然后依次得到4123 4132 4213 4231 4312 4321
这样得到了全排列。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
static int sts=0;
void dis_num(int *num, int n){
int k;
printf("%d: ", sts);
for(k=0; k<n; k++){
printf("%d ", *(num+k));
}
printf("\n");
}
void quanpailie(int *num, int k, int n){ //按层进行全排列,一层交换方法 1 2 3 4->2 1 3 4->3 1 2 4->4 1 2 3 第一个元素逐个向后交换,然后再对第二位之后的数据进行全排列
//num:原数字序列,k:从第几个元素开始对调,n:数字序列数字个数
int *newnum;
int kk, temp;
if(k>=n){
++sts;
dis_num(num, n);
return;
}
newnum = (int*)malloc(sizeof(int)*n);
memcpy(newnum, num, sizeof(int)*n); //不恢复序列就是从小到大,一层交换例子 1 2 3 4->2 1 3 4->3 1 2 4->4 1 2 3
//-------->问题代码,全排列结果非从小到大
for(kk=k; kk<n; kk++){
//memcpy(newnum, num, sizeof(int)*n); //恢复序列,交换下一个元素,这个放的位置不一样,结果就不同
temp = newnum[k];
newnum[k] = newnum[kk];
newnum[kk] = temp;
quanpailie(newnum, k+1, n); //交换后,元素k后面的元素进行全排列
}
}
int main(void){
int n, k;
int *num;
printf("n="); scanf("%d", &n);
if(n<1&&n>9)
return 0;
num = (int*)malloc(sizeof(int)*n);
for(k=0; k<n; k++){
*(num+k) = k+1;
}
quanpailie(num, 0, n);
system("pause");
return 0;
}
3.局部排序
规律:
在当前序列中,从尾端往前寻找两个相邻元素,前一个记为*i,后一个记为*ii,并且满足*i < *ii。然后再从尾端寻找另一个元素*j,如果满足*i < *j,
即将第i个元素与第j个元素对调,并将第ii个元素之后(包括ii)的所有元素颠倒排序,即求出下一个序列了。
比如:12345开始组合排列,12354,12435,...,12543,在12位置不变情况下,最大组合情况为12543,然后,比2略大的数必定在从后向前搜索到的第一个数,所以改为13542,此时需要从最小组合开始,对542进行排序,得到结果13245;
又当13位置不变,其最大为13542,向后搜索到比3大的为4,则改为14532,然后对4之后的数排序,的14235. 排序复杂度决定这个算法复杂度。
在当前序列中,从尾端往前寻找两个相邻元素,前一个记为*i,后一个记为*ii,并且满足*i < *ii。然后再从尾端寻找另一个元素*j,如果满足*i < *j,
即将第i个元素与第j个元素对调,并将第ii个元素之后(包括ii)的所有元素颠倒排序,即求出下一个序列了。
比如:12345开始组合排列,12354,12435,...,12543,在12位置不变情况下,最大组合情况为12543,然后,比2略大的数必定在从后向前搜索到的第一个数,所以改为13542,此时需要从最小组合开始,对542进行排序,得到结果13245;
又当13位置不变,其最大为13542,向后搜索到比3大的为4,则改为14532,然后对4之后的数排序,的14235. 排序复杂度决定这个算法复杂度。
#include <stdio.h>
#include <stdlib.h>
int find(int *d, int n, int *i, int *ii, int *j){
int k;
for(k=n-1; k>=1; k--){
if(*(d+k-1)<*(d+k)){
*i=k-1;
*ii=k;
break;
}
}
if(k==0)
return -1;
for(k=n-1; k>=0; k--){
if(*(d+*i)<*(d+k)){
*j = k;
break;
}
}
return 0;
}
int partition(int *d, int low, int high){
int temp;
while(low<high){
while(low<high&&*(d+low)<=*(d+high)) high--;
temp = *(d+low);
*(d+low) = *(d+high);
*(d+high) = temp;
while(low<high&&*(d+high)>=*(d+low)) low++;
temp = *(d+low);
*(d+low) = *(d+high);
*(d+high) = temp;
}
return low;
}
void quick_sort(int *d, int low, int high){
int mid;
if(low<high){
mid = partition(d, low, high);
quick_sort(d, low, mid-1);
quick_sort(d, mid+1, high);
}
}
void display_full_array(int *d, int n){
int k;
int i, ii, j;
int temp;
while(1){
for(k=0; k<n; k++){
printf("%d", *(d+k));
}
printf("\n");
if(find(d, n, &i, &ii, &j)==-1)
break;
temp = *(d+i);
*(d+i) = *(d+j);
*(d+j) = temp;
quick_sort(d, ii, n-1);
}
}
int main(void){
int n;
int *d, k;
scanf("%d", &n);
if(n>0&&n<10){
d = (int*)malloc(sizeof(int)*n);
for(k=0; k<n; k++){
*(d+k) = k+1;
}
}
else
return 0;
display_full_array(d, n);
system("pause");
return 0;
}