强化学习的探索和利用

本文探讨了强化学习中的探索与利用问题,通过一个餐厅推荐菜品的场景解释了探索(获取反馈)和利用(选择最佳动作)的平衡。介绍了∈-greedy算法和置信区间上界(UCB)算法,以及强化学习在推荐系统和博弈游戏中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. 简述

在和环境不断交互的过程中,智能体在不同的状态下不停地探索,获取不同的动作的反馈。探索(Exploration)能够帮助智能体通过不断试验获得反馈,利用(Exploitation)是指利用已有的反馈信息选择最好的动作。因此如何平衡探索和利用是智能体在交互中不断学习的重要问题。

二. 什么是探索和利用?

场景假设:假设我们开了一家叫Surprise Me的饭馆,客人来了不用点餐,而是用算法来决定该做哪道菜。具体过程为:

(1)客人 user = 1,...,T 依次到达饭馆。

(2)给客人推荐一道菜,客人接受则留下吃饭(Reward=1),拒绝则离开(Reward=0)。

(3)记录选择接受的客人总数 total_reward。

为了由浅入深地解决这个问题,我们先做以下三个假设。

(a)同一道菜,有时候会做得好吃一些(概率=p),有时候会难吃一些

(概率 = 1−p),但是并不知道概率p是多少,只能通过多次观测进行统计。

(b)不考虑个人口味的差异,即当菜做得好吃时,客人一定会留下

(Reward=1);当菜不好吃时,客人一定会离开(Reward=0)。

(c)菜好吃或不好吃只有客人说的算,饭馆是事先不知道的。

探索阶段:通过多次观测推断出一道菜做得好吃的概率。如果一道菜已经推荐了k遍(获取了k次反馈),就可以算出菜做得好吃的概率

如果推荐的次数足够多,k足够大,那么 会趋近于真实的菜做得好吃的概率p。

利用阶段:已知所有的菜做得好吃的概率,决定该如何推荐?如果每道菜都被推荐了很多遍,就可以计算出每道菜做得好吃的概率 ,于是只需推荐 最大的那道菜。

探索和利用的平衡是一个经久不衰的问题。一是,探索的代价是要不停地拿用户去试菜,影响客户的体验,但有助于更加准确的估计每道菜好吃的概率;二是,利用会基于目前的估计拿出“最好的”菜来服务客户,但目前的估计可能是不准的(因为试吃的人还不够多)。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值