关于VIT模型训练自己的数据集报错为无效的数据

ImageNet2012数据集太大了,准备使用自己的数据集进行训练,报错为无效的数据,报错信息:

Traceback (most recent call last):
  File "train.py", line 247, in <module>
    train_net()
  File "/home/ai/anaconda3/zxl/vit/src/model_utils/moxing_adapter.py", line 104, in wrapped_func
    run_func(*args, **kwargs)
  File "train.py", line 230, in train_net
    model.train(epoch_size, dataset, callbacks=cb, sink_size=step_size)
  File "/home/ai/anaconda3/envs/mindspore/lib/python3.7/site-packages/mindspore/train/model.py", line 893, in train
    raise ValueError("There is no valid data in dataset, please check dataset file firstly.")
ValueError: There is no valid data in dataset, please check dataset file firstly.

我阅读代码后发现数据的加载使用的是ImageFolderDataset,我的数据集如下:

执行train.py后就报错为无效数据

请问训练官方的VIT脚本时数据集结构应该是怎样的

 问题找到了,batch_size太大了导致的

您可以使用ViT模型训练自己的数据集。首先,您需要准备您的数据集并进行预处理。确保您的数据集ViT模型的输入规格相匹配。然后,您可以使用常见的深度学习框架(如PyTorch或TensorFlow)来加载ViT模型,并将其适应您的数据集。 以下是一些步骤供您参考: 1. 数据准备:整理和清洗您的数据集。根据任务的类型,您可能需要进行标注或其他预处理步骤。 2. 数据扩增(可选):如果您的数据集较小,您可以使用数据扩增技术(如旋转、翻转、裁剪等)来增加数据样本的数量和多样性。 3. 数据划分:将数据集划分为训练集、验证集和测试集。训练集用于模型训练,验证集用于调整超参数和监控模型性能,测试集用于评估最终模型的性能。 4. 输入编码:将数据集中的输入转换为ViT模型所需的格式。ViT模型通常接受图像输入,因此您可能需要将文本、音频或其他形式的数据转换为图像表示。 5. 模型训练:使用训练集来训练ViT模型。使用适当的损失函数和优化器,并选择合适的超参数。根据需要,您可以使用预训练ViT模型作为起点,进行微调或端到端训练。 6. 模型评估:使用验证集来评估模型的性能。根据任务的不同,您可以选择适当的评估指标(如准确率、精确度、召回率等)。 7. 模型调优:根据验证集的性能,调整模型的超参数或进行其他改进措施,以提高模型的性能。 8. 最终评估:使用测试集来评估经过调优的模型的性能。这将为您提供模型在真实数据上的预测能力。 请注意,以上步骤仅为一般指南。具体实施细节可能会因您的任务和数据集而有所不同。在实际操作中,您可能还需要处理数据集的不平衡问题、进行超参数搜索和模型调优等。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值