How many ways
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
这是一个简单的生存游戏,你控制一个机器人从一个棋盘的起始点(1,1)走到棋盘的终点(n,m)。游戏的规则描述如下:
1.机器人一开始在棋盘的起始点并有起始点所标有的能量。
2.机器人只能向右或者向下走,并且每走一步消耗一单位能量。
3.机器人不能在原地停留。
4.当机器人选择了一条可行路径后,当他走到这条路径的终点时,他将只有终点所标记的能量。
如上图,机器人一开始在(1,1)点,并拥有4单位能量,蓝色方块表示他所能到达的点,如果他在这次路径选择中选择的终点是(2,4)
点,当他到达(2,4)点时将拥有1单位的能量,并开始下一次路径选择,直到到达(6,6)点。
我们的问题是机器人有多少种方式从起点走到终点。这可能是一个很大的数,输出的结果对10000取模。
1.机器人一开始在棋盘的起始点并有起始点所标有的能量。
2.机器人只能向右或者向下走,并且每走一步消耗一单位能量。
3.机器人不能在原地停留。
4.当机器人选择了一条可行路径后,当他走到这条路径的终点时,他将只有终点所标记的能量。
如上图,机器人一开始在(1,1)点,并拥有4单位能量,蓝色方块表示他所能到达的点,如果他在这次路径选择中选择的终点是(2,4)
点,当他到达(2,4)点时将拥有1单位的能量,并开始下一次路径选择,直到到达(6,6)点。
我们的问题是机器人有多少种方式从起点走到终点。这可能是一个很大的数,输出的结果对10000取模。
Input
第一行输入一个整数T,表示数据的组数。
对于每一组数据第一行输入两个整数n,m(1 <= n,m <= 100)。表示棋盘的大小。接下来输入n行,每行m个整数e(0 <= e < 20)。
对于每一组数据第一行输入两个整数n,m(1 <= n,m <= 100)。表示棋盘的大小。接下来输入n行,每行m个整数e(0 <= e < 20)。
Output
对于每一组数据输出方式总数对10000取模的结果.
Sample Input
1 6 6 4 5 6 6 4 3 2 2 3 1 7 2 1 1 4 6 2 7 5 8 4 3 9 5 7 6 6 2 1 5 3 1 1 3 7 2
Sample Output
3948
题意中说了,机器人在某点处他的能量就为该点的值,所有他能走的也就x 和 y 变化的总和不超过该点的值的范围,不过由于这题的点较多,所以如果直接爆搜,那肯定会超时,所以就需要用到记忆化搜索了,用一个二维数组来标记该点是否被搜索过并且如果搜索过就储存在该点搜索的值,这样,如果搜索该点时已经搜素过了,那么直接返回该点的值就行,这样进行记忆性的搜索,能够有效的缩短时间!
记忆化搜索,顾名思义就是记忆,如果某个搜索过程没有搜素过,就进行搜索并将其搜索的结果储存记忆下来,下次就不用再搜索了,直接取结果就行!
附上代码:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
int n,m;
int Map[110][110];
int visit[110][110];
int dfs(int x,int y)
{
int s = 0;
if(x == n - 1 && y == m - 1)
return 1;
if(visit[x][y] >= 0)
return visit[x][y];
for(int i = 0;i <= Map[x][y];i++)
{
for(int j = 0;j <= Map[x][y];j++)
{
if(i + j <= Map[x][y] && i + j != 0 && Map[x][y] > 0 && x + i < n && y + j < m)
{
s += dfs(x + i,y + j);
s %= 10000;
}
}
}
visit[x][y] = s;
return s;
}
int main()
{
int t;
cin >> t;
while(t--)
{
cin >> n >> m;
for(int i = 0;i < n;i++)
{
for(int j = 0;j < m;j++)
{
scanf("%d",&Map[i][j]);
}
}
memset(visit,-1,sizeof(visit));
int ans = dfs(0,0);
cout << ans % 10000 << endl;
}
return 0;
}