内部收益率
Description
在金融中,我们有时会用内部收益率IRR来评价项目的投资财务效益,它等于使得投资净现值NPV等于0的贴现率。换句话说,给定项目的期数T、初始现金流CF0和项目各期的现金流CF1, CF2, ...,CFT,IRR是下面方程的解:
为了简单起见,本题假定:除了项目启动时有一笔投入(即初始现金流CF0 < 0)之外,其余各期均能赚钱(即对于所有i=1,2,...,T,CFi>0)。根据定义,IRR可以是负数,但不能大于-1。
Input
输入文件最多包含25组测试数据,每个数据占两行,第一行包含一个正整数T(1<=T<=10),表示项目的期数。第二行包含T+1个整数:CF0, CF1, CF2, ..., CFT,其中CF0 < 0, 0 < CFi < 10000 (i=1,2,...,T)。T=0表示输入结束,你的程序不应当处理这一行。
Output
对于每组数据,输出仅一行,即项目的IRR,四舍五入保留小数点后两位。如果IRR不存在,输出"No",如果有多个不同IRR满足条件,输出"Too many"(均不含引号)
Sample Input
1
-1 2
2
-8 6 9
0
Sample Output
1.000.50
Hint
无
题意主要说有个IRR的值满足那个式子,然后给出式子中的其他变量的值,给出IRR的范围,让你求有没有解
精度的处理很重要,所以二分是最好的选择,进行多次二分,这样得到的结果会是比较精准的,分别取出他的最小和最大,开始进行二分查找
附上代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<string>
#define INF 0x3f3f3f3f
using namespace std;
int main()
{
int n;
while(cin >> n && n)
{
double cf[15];
for(int i = 0;i <= n;i++)
{
cin >> cf[i];
}
double l = -1.0;
double m = INF;
for(int i = 0;i < 100;i++)
{
double s = (l + m) / 2;
double ans = 0;
for(int j = 1;j <= n;j++)
{
ans += cf[j]/pow(1+s,j);
}
if(ans <= -cf[0])
{
m = s;
}
else
l = s;
}
printf("%.2lf\n",l);
}
return 0;
}