寻找素数对
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Description
哥德巴赫猜想大家都知道一点吧.我们现在不是想证明这个结论,而是想在程序语言内部能够表示的数集中,任意取出一个偶数,来寻找两个素数,使得其和等于该偶数.
做好了这件实事,就能说明这个猜想是成立的.
由于可以有不同的素数对来表示同一个偶数,所以专门要求所寻找的素数对是两个值最相近的.
做好了这件实事,就能说明这个猜想是成立的.
由于可以有不同的素数对来表示同一个偶数,所以专门要求所寻找的素数对是两个值最相近的.
Input
输入中是一些偶整数M(5<M<=10000).
Output
对于每个偶数,输出两个彼此最接近的素数,其和等于该偶数.
Sample Input
20 30 40
Sample Output
7 13 13 17 17 23
素数的操作,要想不超时,那就要打表,既然打表,就用比较快的打表方式,素数快速打表
打好表以后,就从中间开始往前遍历,找到合数的就输出,然后跳出循环
附上代码:
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int MAXN=10010;
bool notprime[MAXN];//值为false表示素数,值为true表示非素数
void init()
{
memset(notprime,false,sizeof(notprime));
notprime[0]=notprime[1]=true;
for(int i=2;i<MAXN;i++){
if(!notprime[i])
{
if(i>MAXN/i)
continue;
for(int j=i*i;j<MAXN;j+=i) // i 为素数,i 的倍数都不是 素数
notprime[j]=true;
}
}
}
int main()
{
init();
int n;
while(~scanf("%d",&n))
{
for(int i = n / 2;i >= 1;i--)
{
if(!notprime[i] && !notprime[n - i])
{
printf("%d %d\n",i,n - i);
break;
}
}
}
return 0;
}