sklearn.preprocessing.RobustScaler(解释和原理,分位数,四分位差)

本文详细介绍了sklearn.preprocessing.RobustScaler的原理,它使用百分位数进行数据缩放,不受极端值影响。通过示例展示了如何使用该工具并探讨了其在处理少量数据时可能产生的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提示:sklearn.preprocessing.RobustScaler(解释和原理,分位数,四分位差)

提示:以下是本篇文章正文内容,下面案例可供参考

一、RobustScaler 是什么?

RobustScaler 的居中和缩放统计基于百分位数,因此不会受到少数非常大的边缘异常值的影响。
计算公式如下(具体计算公式以官网提供的代码为准):

value_result = (value-Media)/(Q1-Q3)
Q1的位置 = 1 * (n + 1) / 4
Q3的位置 =  3 *(n + 1) / 4
n : 表示数据的个数。
media : 中位数
Q1 : 是第 1 个四分位数(第 25 个分位数)
Q3 : 第 3 个四分位数(第 75 个分位数)

在这里插入图片描述

二、代码

1.代码

import pandas as pd
from sklearn.preprocessing import RobustScaler

data = pd.DataFrame(
    {
   
        'a': [1, 2, 3, 4, 6, 5, 6],
        'b': 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值