缘起
看英文论文的需要,尤其是看重要的论文,由于本人英语比较渣,加之天性愚钝,觉得边看边翻可能是个不错的方法。
正文
在边看边翻的过程中,有时,会遇到很长的句子,虽然知道它说什么,但是却不知道如何用中文表述。此时就借助在线翻译软件。常使用的在线翻译:youdao翻译,百度翻译,google翻译。综合来看,在论文翻译中,个人感觉 有道< 百度 < 谷歌。当然,考虑到有道有人工在线翻译,而而后两者都是机器翻译,综合来说,可能差不多。不过像我这样的穷学生,自然不会去用人家付费的人工服务。不过,同样是机器翻译,为什么会出现这样的差异? 作为一个学习计算机的,我对此很好奇,是算法的差异还是其他因素。
回想到自己曾扫过几眼的《数学之美》和彻夜通读的《世界因你而不同》,里面提到了关于李开复的工作,就是关于语音识别方面的。记得,好像是李最初将统计学和语音识别结合在一起的,之前的方向都是使用各种各样的人工智能算法。似乎结合大量的语料,并使用统计学方法,很多问题可以取得不错的效果,比如自然语言处理之类的NP问题。像机器翻译,在大量的数据或者语料的支持下,结合统计学方法,将可以将机器翻译的程序训练的越来越智能。这让我想起最近很热的数据挖掘和机器学习(可能人家一直很热,只是我不知道而已),其实也是这个思路。
从训练的语料的大小角度来看,google> baidu >youdao,这也就形成了三者在机器翻译的差距。当然,以上只是一家之言,偏见谬误之处,全当听个笑话。
PS: 在翻译论文的时候,发现每次一段一段复制-粘贴-翻译-再复制-粘贴-修改这样的循环下来,大多数时间都浪费在复制粘贴上了,自然想到是否存在全文翻译这样的方便的工具,google了一下,发现google的翻译提供全文翻译这样便捷的功能,如下图中左下角的translate a document,选中后将要翻译的文件上传上去,然后点击翻译,等待结果出现,下面是一组图示:
(注:初次进入的时候会出现左下角的文字链接)
仔细看了翻译的结果后发现,由Tex编译生成的pdf文件中,在全文翻译中,图片的处理非常的糟糕,这是因为Tex中图片是以代码的形式存在的。既是这样,也挺错误的,原本就没指望机器翻译能做到怎样,这样可以减少打字的次数。
结论
写了一些博客,这次就想水水,水水更健康。