蓝桥杯历届试题代码参考
历届试题
核桃的数量
试题 历届试题 核桃的数量
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
小张是软件项目经理,他带领3个开发组。工期紧,今天都在加班呢。为鼓舞士气,小张打算给每个组发一袋核桃(据传言能补脑)。他的要求是:
-
各组的核桃数量必须相同
-
各组内必须能平分核桃(当然是不能打碎的)
-
尽量提供满足1,2条件的最小数量(节约闹革命嘛)
输入格式
输入包含三个正整数a, b, c,表示每个组正在加班的人数,用空格分开(a,b,c<30)
输出格式
输出一个正整数,表示每袋核桃的数量。
样例输入1
2 4 5
样例输出1
20
样例输入2
3 1 1
样例输出2
3
#include<stdio.h>
//递归求最大公约数
int gcd(int m,int n)
{
return n==0?m:gcd(n,m%n);
}
//相减法求最大公约数
int gcd2(int a,int b)
{
while(a!=b)
{
if(a>b)
{
a = a-b;
}
else
{
b = b-a;
}
}
return a;//最大公约数是a or b
}
int main()
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
int min1 = (a*b)/gcd2(a,b);//a和b的最小公倍数
int min2 = (min1*c)/gcd2(min1,c);//a、b和c的最小公倍数
printf("%d",min2);
}
打印十字图
试题 历届试题 打印十字图
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
小明为某机构设计了一个十字型的徽标(并非红十字会啊),如下所示:
…$$$$$$$$$$$KaTeX parse error: Can't use function '$' in math mode at position 6: .. ..$̲...........$.. . . .$$$$$$ . . .$
. . . ... ...… . . . ... ...
. . . . . .$ . . . . . .
. . .… . . . ... ...… . . .
. . ..$KaTeX parse error: Can't use function '$' in math mode at position 2: .$̲. . . ..$
. . .. . . . ... ...… . . ..$
. . .. . . .$$KaTeX parse error: Can't use function '$' in math mode at position 2: .$̲.$.$ $.$.$...$.… . . ..$KaTeX parse error: Can't use function '$' in math mode at position 2: .$̲.$ $.$...$...$.… . . .$$ . . . . . .
. . . ... ...… . . . ... ...
$ . . .$$$$$ . . .$
… . . . . . . . . . . . ........... ...........…
…$$$$$$$$$$$$$…
对方同时也需要在电脑dos窗口中以字符的形式输出该标志,并能任意控制层数。
输入格式
一个正整数 n (n<30) 表示要求打印图形的层数。
输出格式
对应包围层数的该标志。
样例输入1
1
样例输出1
…$$$KaTeX parse error: Can't use function '$' in math mode at position 6: .. ..$̲...$.. . . ..$KaTeX parse error: Can't use function '$' in math mode at position 2: $̲...$...$ $.$KaTeX parse error: Can't use function '$' in math mode at position 2: .$̲ $...$...$ . . ..$KaTeX parse error: Can't use function '$' in math mode at position 4: ..$̲...$.. ..$ . . 样 例 输 入 23 样 例 输 出 2.. .. 样例输入2 3 样例输出2 .. ..样例输入23样例输出2..$$$$$$$$$KaTeX parse error: Can't use function '$' in math mode at position 6: .. ..$̲...........$.. . . .$$$$$$ . . .$
. . . ... ...… . . . ... ...
. . . . . .$ . . . . . .
. . .… . . . ... ...… . . .
. . ..$KaTeX parse error: Can't use function '$' in math mode at position 2: .$̲. . . ..$
. . .. . . . ... ...… . . ..$
. . .. . . .$$KaTeX parse error: Can't use function '$' in math mode at position 2: .$̲.$.$ $.$.$...$.… . . ..$KaTeX parse error: Can't use function '$' in math mode at position 2: .$̲.$ $.$...$...$.… . . .$$ . . . . . .
. . . ... ...… . . . ... ...
$ . . .$$$$$ . . .$
… . . . . . . . . . . . ........... ...........…
…$$$$$$$$$$$$$…
提示
请仔细观察样例,尤其要注意句点的数量和输出位置。
#include <iostream>
#include <string.h>
using namespace std;
int main()
{
char data[126][126]; //二维数组,保存图形
int n;
while(cin>>n){
memset(data,'.',sizeof(data));//将数组置为‘.’,后续操作找出‘$’的位置。
int m=2*n+3; //找到中间线,即上图中红线的位置。
//考虑四分之一图案,对第一部分
for(int i=0;i<m;i++){
//行,从0开始
for(int j=i;j<m;j++){
//列
//考虑对角线上‘$’的位置,数组从0开始
if(i!=0 && i%2==0&&j==i){
//从所在对角线往上往左两个位置都为‘$’
data[i-2][j]=data[i-1][j]=data[i][j]='$';
data[i][j-2]=data[i][j-1]='$';
//外层边界,共有m-j个‘$’
for(int k=j;k<m;k++){
data[k][i-2]=data[i-2][k]='$';
}
}
}
}
//补全图形上半部分,(第2部分)
for(int i=0;i<m;i++)
for(int j=1;j<m;j++)
data[i][m+j-1]=data[i][m-j-1];
//补全图形全体,下半部分(第3,4部分)
for(int i=1;i<m;i++)
for(int j=0;j<4*n+5;j++)
data[m+i-1][j]=data[m-i-1][j];
//打印输出图形
for(int i=0;i<4*n+5;i++){
for(int j=0;j<4*n+5;j++)
cout<<data[i][j];
cout <<endl;
}
}
return 0;
}
带分数
历届试题 带分数
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
100 可以表示为带分数的形式:100 = 3 + 69258 / 714。
还可以表示为:100 = 82 + 3546 / 197。
注意特征:带分数中,数字1~9分别出现且只出现一次(不包含0)。
类似这样的带分数,100 有 11 种表示法。
输入格式
从标准输入读入一个正整数N (N<1000*1000)
输出格式
程序输出该数字用数码1~9不重复不遗漏地组成带分数表示的全部种数。
注意:不要求输出每个表示,只统计有多少表示法!
样例输入1
100
样例输出1
11
样例输入2
105
样例输出2
6
#include<iostream>
#include<cstring>
using namespace std;
int vis[10];
int s[10];
int sum;
int num;
void del(int s[])
{
int a,b,c;
for(int i=1;i<=9;i++)
{
a=0;
for(int j=1;j<=i;j++)
{
a=a*10+s[j];
}
if(a<num)
{
for(int j=(9-i)/2+i;j<=8;j++)
{
b=0;
c=0;
for(int h=i+1;h<=j;h++)
b=b*10+s[h];
for(int h=j+1;h<=9;h++)
c=c*10+s[h];
if(b%c==0&&a+b/c==num)
sum++;
}
}
}
}
void dfs(int st,int n)//全排列
{
if(st==n)
del(s);
else
{
for(int i=1;i<=9;i++)
{
if(!vis[i])
{
s[st]=i;
vis[i]=1;
dfs(st+1,n);
vis[i]=0;
}
}
}
}
int main()
{
cin>>num;
memset(vis,0,sizeof(vis));
sum=0;
dfs(1,10);
cout<<sum<<endl;
return 0;
}
剪格子
历届试题 剪格子
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
如下图所示,3 x 3 的格子中填写了一些整数。
±-–±-+
|10 1|52|
±-***–+
|20|30 1|
*******–+
| 1| 2| 3|
±-±-±-+
我们沿着图中的星号线剪开,得到两个部分,每个部分的数字和都是60。
本题的要求就是请你编程判定:对给定的m x n 的格子中的整数,是否可以分割为两个部分,使得这两个区域的数字和相等。
如果存在多种解答,请输出包含左上角格子的那个区域包含的格子的最小数目。
如果无法分割,则输出 0。
输入格式
程序先读入两个整数 m n 用空格分割 (m,n<10)。
表示表格的宽度和高度。
接下来是n行,每行m个正整数,用空格分开。每个整数不大于10000。
输出格式
输出一个整数,表示在所有解中,包含左上角的分割区可能包含的最小的格子数目。
样例输入1
3 3
10 1 52
20 30 1
1 2 3
样例输出1
3
样例输入2
4 3
1 1 1 1
1 30 80 2
1 1 1 100
样例输出2
10
#include<stdio.h>
#include<stdlib.h>
#define N 10
int tab[N][N];
int visit[N][N] = {
0};
int dx[4] = {
1,0,-1,0};
int dy[4] = {
0,1,0,-1};
int sum = 0;
int m,n;
void dfs(int x,int y,int num,int cnt);
int isvisit(int x,int y,int num);
int main()
{
int i,j;
scanf("%d %d", &m, &n);
for(i=0;i<n;i++)
{
for(j=0;j<m;j++)
{
scanf("%d",&tab[i][j]);
sum += tab[i][j];
}
}
if(sum%2==0)
{
dfs(0,0,0,0);
}
else
{
printf("0\n");
}
return 0;
}
void dfs(int x,int y,int num,int cnt)
{
if(num==sum/2)
{
printf("%d\n",cnt);
exit(0);
}
if(isvisit(x,y,num))
{
visit[x][y] = 1;
int i;
for(i=0;i<4;i++)
{
int vx = x + dx[i];
int vy = y + dy[i];
dfs(vx, vy, num+tab[x][y], cnt+1);
}
visit[x][y] = 0;
}
}
int isvisit(int x,int y,int num)
{
if( x<0 || x>=n || y<0 || y>=m )
{
return 0;
}
if(visit[x][y]==1 || num+tab[x][y]>sum/2)
{
return 0;
}
return 1;
}
错误票据
错误票据
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
某涉密单位下发了某种票据,并要在年终全部收回。
每张票据有唯一的ID号。全年所有票据的ID号是连续的,但ID的开始数码是随机选定的。
因为工作人员疏忽,在录入ID号的时候发生了一处错误,造成了某个ID断号,另外一个ID重号。
你的任务是通过编程,找出断号的ID和重号的ID。
假设断号不可能发生在最大和最小号。
输入格式
要求程序首先输入一个整数N(N<100)表示后面数据行数。
接着读入N行数据。
每行数据长度不等,是用空格分开的若干个(不大于100个)正整数(不大于100000),请注意行内和行末可能有多余的空格,你的程序需要能处理这些空格。
每个整数代表一个ID号。
输出格式
要求程序输出1行,含两个整数m n,用空格分隔。
其中,m表示断号ID,n表示重号ID
样例输入1
2
5 6 8 11 9
10 12 9
样例输出1
7 9
样例输入2
6
164 178 108 109 180 155 141 159 104 182 179 118 137 184 115 124 125 129 168 196
172 189 127 107 112 192 103 131 133 169 158
128 102 110 148 139 157 140 195 197
185 152 135 106 123 173 122 136 174 191 145 116 151 143 175 120 161 134 162 190
149 138 142 146 199 126 165 156 153 193 144 166 170 121 171 132 101 194 187 188
113 130 176 154 177 120 117 150 114 183 186 181 100 163 160 167 147 198 111 119
样例输出2
105 120
#include <stdio.h>
int main()
{
int a[10001]={
0};
long m,min=100000,max=0,i,n;
char c;
scanf("%d",&n);
for(i=0;i<n;i++)
while(1)
{
scanf("%ld",&m);
if(m>max) max=m;
if(m<min) min=m;
a[m]++;
c=getchar();
if(c!=' ') break;
}
for(i=min;i<=max;i++)
{
if(a[i]==0) printf("%ld ",i);
if(a[i]==2) m=i;
}
printf("%ld",m);
return 0;
}
翻硬币
翻硬币
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
小明正在玩一个“翻硬币”的游戏。
桌上放着排成一排的若干硬币。我们用 * 表示正面,用 o 表示反面(是小写字母,不是零)。
比如,可能情形是:oo*oooo
如果同时翻转左边的两个硬币,则变为:oooo***oooo
现在小明的问题是:如果已知了初始状态和要达到的目标状态,每次只能同时翻转相邻的两个硬币,那么对特定的局面,最少要翻动多少次呢?
我们约定:把翻动相邻的两个硬币叫做一步操作,那么要求:
输入格式
两行等长的字符串,分别表示初始状态和要达到的目标状态。每行的长度<1000
输出格式
一个整数,表示最小操作步数。
样例输入1
oo
样例输出1
5
样例输入2
ooo***
ooo***
样例输出2
1
#include<iostream>
#define maxn 2000
#include<string.h>
using namespace std;
char st1[maxn] , st2[maxn]; //盛放输入字符串
int change[maxn]; //存储0、1的数组
int main()
{
int len , num = 0;
int i , j;
gets(st1);
gets(st2);
len = strlen(st1);
for(i = 0; i < len; i ++) //相同存1,不同存0
{
if(st1[i] == st2[i]) change[i] = 1;
else change[i] = 0;
}
for(i = 0; i < len; i++)
{
if(!change[i]) //如果该位初始和最终的硬币状态不一样
{
change[i] = 1; //相邻的硬币翻转
change[i+1] = change[i+1]==0 ? 1 : 0;
num++;
}
}
printf("%d\n" , num);
return 0;
}
连号区间数
连号区间数
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
小明这些天一直在思考这样一个奇怪而有趣的问题:
在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:
如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。
当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。
输入格式
第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。
第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。
输出格式
输出一个整数,表示不同连号区间的数目。
样例输入1
4
3 2 4 1
样例输出1
7
样例输入2
5
3 4 2 5 1
样例输出2
9
#include<stdio.h>
int main()
{
int s[50005],a,i,min,max,count=0,j;
scanf("%d",&a);
for( i = 0; i < a; i++)
{
scanf("%d",&s[i]);
}
for( i = 0; i <a;i++ )
{
min=s[i];
max=s[i];
for( j = i; j <a; j++)
{
if(min>s[j]){
min =s[j];}
if(max<s[j]){
max =s[j];}
if((max-min)==(j-i))
{
count++;
}
}
}
printf("%d",count);
return 0;
}
买不到的数目
买不到的数目
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
小明开了一家糖果店。他别出心裁:把水果糖包成4颗一包和7颗一包的两种。糖果不能拆包卖。
小朋友来买糖的时候,他就用这两种包装来组合。当然有些糖果数目是无法组合出来的,比如要买 10 颗糖。
你可以用计算机测试一下,在这种包装情况下,最大不能买到的数量是17。大于17的任何数字都可以用4和7组合出来。
本题的要求就是在已知两个包装的数量时,求最大不能组合出的数字。
输入格式
两个正整数,表示每种包装中糖的颗数(都不多于1000)
输出格式
一个正整数,表示最大不能买到的糖数
样例输入1
4 7
样例输出1
17
样例输入2
3 5
样例输出2
7
#include<stdio.h>
#define MAXSIZE 1000
int main()
{
int flag[MAXSIZE] = {
0};
int maxunuse[MAXSIZE] = {
0};
int num1, num2, minNum, maxNum, temp, i, count = 0;
scanf("%d%d", &num1, &num2);
minNum = ((num1 < num2) ? num1 : num2);
maxNum = num1 + num2 - minNum;
for(i = 1; ;i++)
{
temp = i * maxNum % minNum;
if((temp) && flag[temp] == 0)
{
flag[temp] = 1;
maxunuse[temp] = i * maxNum -minNum;
count++;
if(count == minNum - 1)
{
break;
}
}
}
printf("%d\n", maxunuse[temp]);
return 0;
}
大臣的旅费
大臣的旅费
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
很久以前,T王国空前繁荣。为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。
为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。
J是T国重要大臣,他巡查于各大城市之间,体察民情。所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情。他有一个钱袋,用于存放往来城市间的路费。
聪明的J发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他花费的路费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。
J大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?
输入格式
输入的第一行包含一个整数n,表示包括首都在内的T王国的城市数
城市从1开始依次编号,1号城市为首都。
接下来n-1行,描述T国的高速路(T国的高速路一定是n-1条)
每行三个整数Pi, Qi, Di,表示城市Pi和城市Qi之间有一条高速路,长度为Di千米。
输出格式
输出一个整数,表示大臣J最多花费的路费是多少。
样例输入1
5
1 2 2
1 3 1
2 4 5
2 5 4
样例输出1
135
输出格式
大臣J从城市4到城市5要花费135的路费。
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
struct node;
typedef struct node Node;
typedef Node *PtrToNode;
typedef PtrToNode List;
typedef PtrToNode Position;
struct node
{
int n;
int val;
Position next;
};
int count=0;
int max=0;
int x;
int *visit; //是否已遍历
Position Last(List l); //找出最后项
void Insert(int x,int q,List l,Position p); //在p后插入含x的项
void Dfs(int a,List l[]); //深度优先搜索
int Num(List l);
int main(void)
{
int n,u,v,q,a,b;
int i,j,k;
Node *head;
List *l,tmp;
Position p;
fscanf(stdin,"%d",&n);
head=(Node *)malloc(sizeof(Node)*(n+1));
l=(List *)malloc(sizeof(List)*(n+1));
visit=(int *)malloc(sizeof(int)*(n+1));
for(i=0;i<=n;i++) //初始化表头及链表
{
head[i].next=NULL;
l[i]=&head[i];
}
for(i=1;i<=n-1;i++) //建立无向图
{
fscanf(stdin,"%d%d%d",&u,&v,&q);
Insert(v,q,l[u],Last(l[u]));
Insert(u,q,l[v],Last(l[v]));
}
for(j=1;j<=n;j++)
visit[j]=0;
Dfs(1,l); //第一次遍历,找到点a,用全局变量x保存
for(j=1;j<=n;j++)
visit[j]=0;
count=0;
max=0;
Dfs(x,l); //第二次遍历,找到点b,用全局变量x保存,此时max为最大距离
printf("%d",max*10+(max+1)*max/2);
return 0;
}
Position Last(List l)
{
Position p;
for(p=l;p->next!=NULL;p=p->next);
return p;
}
void Insert(int x,int q,List l,Position p)
{
Position tmp;
tmp=(Position) malloc(sizeof(Node));
tmp->n=x;
tmp->val=q;
tmp->next=p->next;
p->next=tmp;
}
void Dfs(int a,List l[])
{
Position p;
visit[a]=1;
for(p=l[a]->next;p!=NULL;p=p->next)
if(!(visit[p->n]))
{
count+=p->val;
if(count>max)
{
max=count;
x=p->n;
}
Dfs(p->n,l);
count-=p->val;
}
}
int Num(List l)
{
int n=0;
Position p;
for(p=l->next;p!=NULL;p=p->next)
n++;
return n;
}
幸运数
幸运数
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
幸运数是波兰数学家乌拉姆命名的。它采用与生成素数类似的“筛法”生成
。
首先从1开始写出自然数1,2,3,4,5,6,…
1 就是第一个幸运数。
我们从2这个数开始。把所有序号能被2整除的项删除,变为:
1 _ 3 _ 5 _ 7 _ 9 …
把它们缩紧,重新记序,为:
1 3 5 7 9 … 。这时,3为第2个幸运数,然后把所有能被3整除的序号位置的数删去。注意,是序号位置,不是那个数本身能否被3整除!! 删除的应该是5,11, 17, …
此时7为第3个幸运数,然后再删去序号位置能被7整除的(19,39,…)
最后剩下的序列类似:
1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, …
输入格式
输入两个正整数m n, 用空格分开 (m < n < 1000*1000)
输出格式
程序输出 位于m和n之间的幸运数的个数(不包含m和n)。
样例输入1
1 20
样例输出1
5
样例输入2
30 69
样例输出2
8
#include <cstdio>
using namespace std;
int m,n,cur,mod,sta,p,ans;//cur表示当前该处理的数字,sta表示这个数字的位置,p表示这个数字的前一个数字
int nxt[1000005];//数组模拟链表
void remov(int pre,int num,int cnt) {
mod=num;
while(num!=-1) {
if(cnt==mod) {
//如果当前数的位置能整除mod,则删除这个数,并将cnt置0
nxt[pre]=nxt[num];
cnt=0;
}
else//否则即将处理的数的前一个数变更
pre=num;
num=nxt[num];
++cnt;
}
}
int main() {
while(scanf("%d%d",&m,&n)==2) {
for(int i=1;i<n;++i) {
nxt[i]=i+1;
}
nxt[n-1]=-1;//由于不能等于m和n,所以链表表尾为n-1,这样可以减少后面判断
p=1;
sta=cur=2;//从数字2开始模拟题目所述操作
while(cur!=-1) {
remov(p,cur,sta);
if(sta!=cur) {
//如果当前数的位置不等于其值,则p和sta均改变
p=cur;
++sta;
}
cur=nxt[cur];
}
ans=0;
for(int i=1;i!=-1;i=nxt[i]) {
if(m<i) {
++ans;
}
}
printf("%d\n",ans);
}
return 0;
}
横向打印二叉树
横向打印二叉树
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
二叉树可以用于排序。其原理很简单:对于一个排序二叉树添加新节点时,先与根节点比较,若小则交给左子树继续处理,否则交给右子树。
当遇到空子树时,则把该节点放入那个位置。
比如,10 8 5 7 12 4 的输入顺序,应该建成二叉树如下图所示,其中.表示空白。
…|-12
10-|
…|-8-|
…|…|-7
…|-5-|
…|-4
本题目要求:根据已知的数字,建立排序二叉树,并在标准输出中横向打印该二叉树。
输入格式
输入数据为一行空格分开的N个整数。 N<100,每个数字不超过10000。
输入数据中没有重复的数字。
输出格式
输出该排序二叉树的横向表示。为了便于评卷程序比对空格的数目,请把空格用句点代替:
样例输入1
10 5 20
样例输出1
…|-20
10-|
…|-5
样例输入2
5 10 20 8 4 7
样例输出2
…|-20
…|-10-|
…|…|-8-|
…|…|-7
5-|
…|-4
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
typedef struct TNode
{
int key;
struct TNode *left;
struct TNode *right;
}TNode, *Tree;
Tree insert(Tree root, Tree src)
{
if(root == NULL)
{
root = src;
}
else if(src->key > root->key)
{
root->left = insert(root->left, src);
}
else
{
root->right = insert(root->right, src);
}
return root;
}
char l[1000];
#define U 1
#define D 2
#define S ('.')
void print(Tree root, int s, int dir)
{
if(root != NULL)
{
int i;
char buf[10];
sprintf(buf, "|-%d-", root->key);
int len = strlen(buf);
for(i = 0; i < len; i++)
{
l[s + i] = S;
}
if(dir == D)
{
l[s] = '|';
}
print(root->left, s + len, U);
l[s] = '\0';
if(root->left == NULL && root->right == NULL)
{
buf[len - 1] = '\0';
printf("%s%s\n", l, buf);
}
else
{
printf("%s%s|\n", l, buf);
}
l[s] = S;
if(dir == U)
{
l[s] = '|';
}
print(root->right, s + len, D);
l[s] = S;
}
}
void printPre(Tree root, int s)
{
if(root != NULL)
{
int i;
char buf[10];
sprintf(buf, "%d-", root->key);
int len = strlen(buf);
for(i = 0; i < len; i++)
{
l[s + i] = S;
}
print(root->left, s + len, U);
printf("%s|\n", buf);
print(root->right, s + len, D);
}
}
int main(void)
{
int n;
Tree tree = NULL;
while(scanf("%d", &n) > 0)
{
Tree neo = malloc(sizeof(TNode));
neo->key = n;
neo->left = neo->right = NULL;
tree = insert(tree, neo);
}
printPre(tree, 0);
return 0;
}
危险系数
危险系数
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
抗日战争时期,冀中平原的地道战曾发挥重要作用。
地道的多个站点间有通道连接,形成了庞大的网络。但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系。
我们来定义一个危险系数DF(x,y):
对于两个站点x和y (x != y), 如果能找到一个站点z,当z被敌人破坏后,x和y不连通,那么我们称z为关于x,y的关键点。相应的,对于任意一对站点x和y,危险系数DF(x,y)就表示为这两点之间的关键点个数。
本题的任务是:已知网络结构,求两站点之间的危险系数。
输入格式
输入数据第一行包含2个整数n(2 <= n <= 1000), m(0 <= m <= 2000),分别代表站点数,通道数;
接下来m行,每行两个整数 u,v (1 <= u, v <= n; u != v)代表一条通道;
最后1行,两个数u,v,代表询问两点之间的危险系数DF(u, v)。
输出格式
一个整数,如果询问的两点不连通则输出-1.
样例输入
7 6
1 3
2 3
3 4
3 5
4 5
5 6
1 6
样例输出
2
#include<stdio.h>
#include<stdlib.h>
struct Node
{
int data;
struct Node *pNext;
};
struct Node tab[1001];
int visit[1001]={
0};
int way[1001]={
0};
int count[1001]={
0};
int cnt=0;
void Insert(int n,int x);
void Init(int n);
void dfs(int x,int y,int n);
int fun(int n);
int main()
{
int x,y,n,m,u,v;
scanf("%d%d",&n,&m);
Init(n);
while(m--)
{
scanf("%d%d",&u,&v);
Insert(u,v);
Insert(v,u);
}
scanf("%d%d",&x,&y);
dfs(x,y,0);
int ret=fun(n);
printf("%d\n",ret);
return 0;
}
int fun(int n)
{
int i;
int ret=0;
for(i=1;i<=n;i++)
{
if(count[i]==cnt)
{
ret++;
}
}
return (ret-2);
}
void dfs(int x,int y,int n)
{
visit[x]=1;
way[n]=x;
struct Node *p=&tab[x];
if(x==y)
{
int i;
cnt++;
for(i=0;i<=n;i++)
{
count[way[i]]++;
}
return ;
}
while((p=p->pNext)!=NULL)
{
if(visit[p->data]!=1)
{
dfs(p->data,y,n+1);
visit[p->data]=0;
}
}
}
void Init(int n)
{
int i;
for(i=1;i<=n;i++)
{
tab[i].data=i;
tab[i].pNext=NULL;
}
}
void Insert(int n,int x)
{
struct Node *p=&tab[n];
while(p->pNext!=NULL)
{
p=p->pNext;
}
struct Node *new=(struct Node *)malloc(sizeof(struct Node));
p->pNext=new;
new->data=x;
new->pNext=NULL;
}
网络寻路
网络寻路
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
X 国的一个网络使用若干条线路连接若干个节点。节点间的通信是双向的。某重要数据包,为了安全起见,必须恰好被转发两次到达目的地。该包可能在任意一个节点产生,我们需要知道该网络中一共有多少种不同的转发路径。
源地址和目标地址可以相同,但中间节点必须不同。
如下图所示的网络。
1 -> 2 -> 3 -> 1 是允许的
1 -> 2 -> 1 -> 2 或者 1 -> 2 -> 3 -> 2 都是非法的。
输入格式
输入数据的第一行为两个整数N M,分别表示节点个数和连接线路的条数(1<=N<=10000; 0<=M<=100000)。
接下去有M行,每行为两个整数 u 和 v,表示节点u 和 v 联通(1<=u,v<=N , u!=v)。
输入数据保证任意两点最多只有一条边连接,并且没有自己连自己的边,即不存在重边和自环。
输出格式
输出一个整数,表示满足要求的路径条数。
样例输入1
3 3
1 2
2 3
1 3
样例输出1
6
样例输入2
4 4
1 2
2 3
3 1
1 4
样例输出2
10
#include <bits/stdc++.h>
using namespace std;
#define mo 100005
#define pus push_back
vector<int > d[mo];
int sums;
int tag[5];
void dfs(int node,int dad,int t)
{
int son;
if(t==2)
{
sums+=d[node].size()-1;
return ;
}
for(int i=0;i<d[node].size();i++)
{
son=d[node][i];
if(son!=dad)
{
dfs(son,node,t+1);
}
}
}
int