问题描述
给你一个整数数组
nums
和一个整数k
。请你从nums
中满足下述条件的全部子数组中找出最大子数组和:
- 子数组的长度是
k
,且- 子数组中的所有元素 各不相同 。
返回满足题面要求的最大子数组和。如果不存在子数组满足这些条件,返回
0
。子数组 是数组中一段连续非空的元素序列。
示例
示例 1:
输入:nums = [1,5,4,2,9,9,9], k = 3 输出:15 解释:nums 中长度为 3 的子数组是: - [1,5,4] 满足全部条件,和为 10 。 - [5,4,2] 满足全部条件,和为 11 。 - [4,2,9] 满足全部条件,和为 15 。 - [2,9,9] 不满足全部条件,因为元素 9 出现重复。 - [9,9,9] 不满足全部条件,因为元素 9 出现重复。 因为 15 是满足全部条件的所有子数组中的最大子数组和,所以返回 15 。示例 2:
输入:nums = [4,4,4], k = 3 输出:0 解释:nums 中长度为 3 的子数组是: - [4,4,4] 不满足全部条件,因为元素 4 出现重复。 因为不存在满足全部条件的子数组,所以返回 0 。提示:
1 <= k <= nums.length <= 10^5
1 <= nums[i] <= 10^5
问题分析:
今天多更一个明天直接偷懒(bushi)。分析题意,我们可以用一个数据结构来存长度为k的子数组,这个数据结构可以直接用map,我们用map来记录对应元素和他出现的次数,只要mp.size()==k,那么我们这个子数组就满足题意。知道了这点,只要注意维护变化的map就可以了,具体看代码。
代码如下:
class Solution {
public:
long long maximumSubarraySum(vector<int>& nums, int k) {
unordered_map<int, int> mp;
//最终结果
long long ans = 0;
long long sum = 0;
//记录前k个元素
for (int i = 0; i < k; i++) {
mp[nums[i]]++;
sum += nums[i];
}
//满足条件的话
if(mp.size() == k)
{
ans = sum;
}
//滑动窗口思想
for (int i = k; i < nums.size(); i++) {
mp[nums[i - k]]--;
//前一个元素滑出去,如果对应value值为0,那么erase掉
if (mp[nums[i - k]] == 0)
mp.erase(nums[i - k]);
mp[nums[i]]++;
//维护sum的值,减去前面一个加上后面一个
sum += nums[i] - nums[i - k];
//修改ans
if(mp.size() == k)
{
ans = max(ans, sum);
}
}
return ans;
}
};