HDU-6395 Sequence 暴力+分块+矩阵快速幂 2018 Multi-University Training Contest 7

题意:

给定公式如题;求 f[n] ,n < 1e9

思路:

根据前面部分,明显的是矩阵快速幂,但是后面还加了个 P/n 向下取整

然后我们会发现 P/n 这个数对于某些n是一样的,所以我们想到有这个值进行分块处理;

只要把前 1e6 个 f 数组求出来 ,这样对于 k = P/n ,最大到1000,只要枚举k,然后此时对应k的一个区间可以用矩阵快速幂求解

注意n可能大于P;

 

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#include <set>
#include <cmath>
using namespace std;
typedef long long ll;
typedef vector<ll> vec;
typedef vector<vec> mat;

const ll maxn = 1e6 + 7;
const ll mod = 1e9+7;

ll f[maxn];
ll A , B, C, D, P, n;

void init(ll m) {
  for(ll i = 3; i < m; ++i) {
    ll t = floor(P/i);
    f[i] = (C*f[i-2]%mod + D*f[i-1]%mod + t)%mod;
  }
}

mat mul(mat &A, mat &B) {
  mat C(A.size(), vec(B[0].size()));
  for(int i = 0; i < A.size(); ++i) {
    for(int k = 0; k < B.size(); ++k) {
      for(int j = 0; j < B[0].size(); ++j) {
        C[i][j] = (C[i][j] + A[i][k]*B[k][j]%mod) % mod;
      }
    }
  }
  return C;
}

mat pow_(mat A, ll n) {
  mat B(A.size(), vec(A.size()));
  for(int i = 0; i < A.size(); ++i) B[i][i] = 1LL;
  while(n>0) {
    if(n&1) B = mul(B,A);
    A = mul(A,A);
    n >>= 1;
  }
  return B;
}

int main() {
  int T; scanf("%d", &T);
  while(T--) {
    scanf("%lld%lld%lld%lld%lld%lld", &A, &B, &C, &D, &P, &n);
    f[1] = A; f[2] = B;
    if(n < maxn) {
      init(n+1);
      printf("%lld\n", f[n]);
      continue;
    }
    else {
      init(maxn);
      mat A(1,vec(3));
      mat B(3,vec(3));
      int k = floor(P/maxn), m = floor(P/n);
      ll l_, r_, f1, f2;
      f1 = f[maxn-2], f2 = f[maxn-1];

      for( k ; k >= 1; --k) {
        l_ =  floor(P/(k+1))+1, r_ = floor(P/k);
        if(r_ < l_) continue;

        if(n <= r_) {
          A[0][0] = f2, A[0][1] = f1, A[0][2] = k;
          B[0][0] = D, B[0][1] = 1, B[0][2] = 0;
          B[1][0] = C, B[1][1] = 0, B[1][2] = 0;
          B[2][0] = 1, B[2][1] = 0, B[2][2] = 1;
          B = pow_(B, n-max(l_,maxn)+1);
          A = mul(A,B);
          printf("%lld\n", A[0][0]);
          break;
        }
        else {

          A[0][0] = f2, A[0][1] = f1, A[0][2] = k;
          B[0][0] = D, B[0][1] = 1, B[0][2] = 0;
          B[1][0] = C, B[1][1] = 0, B[1][2] = 0;
          B[2][0] = 1, B[2][1] = 0, B[2][2] = 1;
          B = pow_(B, r_-max(l_,maxn)+1);
          A = mul(A,B);
          f1 = A[0][1]; f2 = A[0][0];
        }
      }
      if(m == 0) {
          A[0][0] = f2, A[0][1] = f1, A[0][2] = 0;
          B[0][0] = D, B[0][1] = 1, B[0][2] = 0;
          B[1][0] = C, B[1][1] = 0, B[1][2] = 0;
          B[2][0] = 1, B[2][1] = 0, B[2][2] = 1;
          B = pow_(B, n-r_);
          A = mul(A,B);
          printf("%lld\n", A[0][0]);
      }
    }
  }

  return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值