810. 黑板异或游戏
黑板上写着一个非负整数数组 nums[i] 。Alice 和 Bob 轮流从黑板上擦掉一个数字,Alice 先手。如果擦除一个数字后,剩余的所有数字按位异或运算得出的结果等于 0 的话,当前玩家游戏失败。 (另外,如果只剩一个数字,按位异或运算得到它本身;如果无数字剩余,按位异或运算结果为 0。)
换种说法就是,轮到某个玩家时,如果当前黑板上所有数字按位异或运算结果等于 0,这个玩家获胜。
假设两个玩家每步都使用最优解,当且仅当 Alice 获胜时返回 true。
示例:
输入: nums = [1, 1, 2]
输出: false
解释:
Alice 有两个选择: 擦掉数字 1 或 2。
如果擦掉 1, 数组变成 [1, 2]。剩余数字按位异或得到 1 XOR 2 = 3。那么 Bob 可以擦掉任意数字,因为 Alice 会成为擦掉最后一个数字的人,她总是会输。
如果 Alice 擦掉 2,那么数组变成[1, 1]。剩余数字按位异或得到 1 XOR 1 = 0。
Alice 仍然会输掉游戏。
提示:
1 <= N <= 1000
0 <= nums[i] <= 2^16
题解:
经过数学证明可以得到对于先手而言若数组长度为偶数则必胜(数学证明太过繁杂,这里不做赘述,详情可以见leetcode官方题解)。
而当数组长度不为偶数时,此时先手没有了必胜的把握,此时我们需要先遍历一下nums数组求其总的异或结果看是否为0,若是0,则还是先手胜;
若不为0,则当先手擦掉一个任意数字后,相对的,后手变成了先手,且此时其对应的数组长度也是偶数,所以他拥有了必胜的条件,所以原先的先手在此时是必输的。
因此我们可以得到先手胜利的两个条件(有一个即可胜利):
1.数组长度为偶数;
2.没擦除之前的数组总异或结果为0;
因此可以得到代码。
代码(JAVA):
class Solution {
public boolean xorGame(int[] nums) {
if(nums.length%2==0){
return true;
}
int sum = 0;
for(int i:nums){
sum^=i;
}
return sum==0;
}
}
C++:
class Solution {
public:
bool xorGame(vector<int>& nums) {
if(nums.size()%2==0){
return true;
}
int sum = 0;
for(int i:nums){
sum^=i;
}
return sum==0;
}
};
C:
bool xorGame(int* nums, int numsSize){
if(numsSize%2==0){
return 1;
}
int sum = 0;
for(int i=0;i<numsSize;i++){
sum^=nums[i];
}
return sum==0;
}