leetcode.810. 黑板异或游戏---数学博弈论

810. 黑板异或游戏

黑板上写着一个非负整数数组 nums[i] 。Alice 和 Bob 轮流从黑板上擦掉一个数字,Alice 先手。如果擦除一个数字后,剩余的所有数字按位异或运算得出的结果等于 0 的话,当前玩家游戏失败。 (另外,如果只剩一个数字,按位异或运算得到它本身;如果无数字剩余,按位异或运算结果为 0。)

换种说法就是,轮到某个玩家时,如果当前黑板上所有数字按位异或运算结果等于 0,这个玩家获胜。

假设两个玩家每步都使用最优解,当且仅当 Alice 获胜时返回 true。

示例:

输入: nums = [1, 1, 2]
输出: false
解释: 
Alice 有两个选择: 擦掉数字 12。
如果擦掉 1, 数组变成 [1, 2]。剩余数字按位异或得到 1 XOR 2 = 3。那么 Bob 可以擦掉任意数字,因为 Alice 会成为擦掉最后一个数字的人,她总是会输。
如果 Alice 擦掉 2,那么数组变成[1, 1]。剩余数字按位异或得到 1 XOR 1 = 0。
Alice 仍然会输掉游戏。
 

提示:

1 <= N <= 1000
0 <= nums[i] <= 2^16

题解:

经过数学证明可以得到对于先手而言若数组长度为偶数则必胜(数学证明太过繁杂,这里不做赘述,详情可以见leetcode官方题解)。

而当数组长度不为偶数时,此时先手没有了必胜的把握,此时我们需要先遍历一下nums数组求其总的异或结果看是否为0,若是0,则还是先手胜;

若不为0,则当先手擦掉一个任意数字后,相对的,后手变成了先手,且此时其对应的数组长度也是偶数,所以他拥有了必胜的条件,所以原先的先手在此时是必输的。

因此我们可以得到先手胜利的两个条件(有一个即可胜利):
1.数组长度为偶数;
2.没擦除之前的数组总异或结果为0;

因此可以得到代码。

代码(JAVA):

class Solution {
    public boolean xorGame(int[] nums) {
        if(nums.length%2==0){
            return true;
        }
        int sum = 0;
        for(int i:nums){
            sum^=i;
        }

        return sum==0; 
    }
}

C++:

class Solution {
public:
    bool xorGame(vector<int>& nums) {
        if(nums.size()%2==0){
            return true;
        }
        int sum = 0;
        for(int i:nums){
            sum^=i;
        }

        return sum==0; 
    }
};

C:

bool xorGame(int* nums, int numsSize){
    if(numsSize%2==0){
        return 1;
    }
    int sum = 0;
    for(int i=0;i<numsSize;i++){
        sum^=nums[i];
    }

    return sum==0; 
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向光.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值