Elasticsearch学习笔记

Elasticsearch 是一款分布式,RESTful 风格的搜索数据分析引擎,可以从海量的数据中高效的找到相关信息。如 wiki 用 ES 进行全文检索及其高亮,Github 用其检索代码,电商平台用其做一些商品推荐等,具有丰富的使用场景。

在本篇文章中,主要涉及以下内容:

  • ES 的核心功能及其应用场景的介绍

  • ES 逻辑架构(文档,索引)的介绍

  • ES 物理架构(集群,节点,shard 等)的介绍

  • ES 环境安装

  • ES 倒排索引

基础介绍

ES 介绍

Elasticsearch 核心功能:

  • 海量数据分布式存储及其集群管理

    • 服务高可用 - 允许有节点停止服务,但集群可正常服务
    • 数据高可用 - 允许节点丢失,但不会丢失数据
    • 可拓展性 - 很好的面对请求量的提升,和数据的不断增长。
  • 大数据实时搜索引擎

    • 结构化数据
    • 全文数据
    • 地理位置
  • 近实时分析

    • 聚合

Elasticsearch 核心特性:

  • 高性能,非 T +1

    • 相较于传统关系型数据库,在搜索,算分,模糊查询上有非常好的体验。
    • 相较于大数据分析 Hadoop,具有更高效率的统计和分析能力。
  • 容易扩展

    • 本身分布式架构
    • 丰富的社区生态

ES 起源历史

Lucene 是由 Java 开发的一款搜索引擎类库,具有高性能,易拓展的优点,但由于其接口只能为 Java ,并且不支持水平拓展的局限性。

2004 年 Shay Banon 基于 Lucene 开发了 Compass,2010 年 重写了 Compass,取名 Elasticsearch,使其支持分布式,可水平拓展,并提供 restful 接口,让任何编程语言进行使用。

ES 生态圈

ES 常常搭配一些产品提供一些解决方案,如常提到的 ELK 就是,ES,Logstash 和 Kibana 的统称,下图很好的描述了 ES 家族及其生态。

在这里插入图片描述

其中 Beat 相较于 Logstash 更加轻量和便携。

ES 常用案例架构

ES 搜索案例,ES 虽然可以单独可以存储引擎,但其无法满足一些事务性的需要,所以常和关系型数据库搭配,采用如下架构:

在这里插入图片描述

ES 日志和指标分析案例,一般就是指数据收集,入库,可视化的过程,常采用如下的架构:

在这里插入图片描述

ES抽象类比关系型数据库

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xianghan收藏册

极简精品作,一分也是一份鼓励哦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值