二叉树基本概念

一棵二叉树的结点的一个有限集合:该集合或者为空,或者是由一个根结点加上两棵分别称为左子树和右子树的,互不相交的二叉树组成。
相关性质:
1.在二叉树的第i(i>=1)层最多有2的i-1次方个结点。
2.深度为k(k>=0)的二叉树最少有k个结点,最多有2的k次方-1个结点。
3.叶结点数等于度为2的非叶结点数加1:N0=N2+1
4.满二叉树:深度为k的满二叉树有2的k次方-1个结点
5.完全二叉树:每个结点都与高度为k的满二叉树中编号1~n的结点一一对应
6.具有n个结点的完全二叉树的深度为log2(n+1)向上取整

抽象数据类型:

#ifndef BINARYTREE_H
#define BINARYTREE_H

template<typename T>
class BinaryTree{
public:
BinaryTree();
//item为根,lch,rch为左右子树
BinaryTree(BinTreeNode<T>* lch,BinTreeNode<T>* rch,T item);
int Height();
int Size();//结点个数
bool IsEmpty();
BinTreeNode<T> *Parent(BinTreeNode<T>* current);
BinTreeNode<T> *LeftChild(BinTreeNode<T>* current);
BinTreeNode<T> *RightChild(BinTreeNode<T>* current);
bool Insert(T item);
bool Remove(T item);
bool Find(const T& item)const;
bool getData(const T& item)const;
BinTreeNode<T>* getRoot()const;
void preOrder(void(*visit)(BinTreeNode<T>*p));//前序
void inOrder(void(*visit)(BinTreeNode<T>*p));//中序
void postOrder(void(*visit)(BinTreeNode<T>*p));//后序
void levelOrder(void(*visit)(BinTreeNode<T>*p));//层次
};

#endif // BINARYTREE_H


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值