ACM高精度运算

#include<stdio.h>
#include<string.h>
char c[2000];//全局变量,存储大数运算的结果
char arr[1000];//高精度除以高精度的余数
long z=0;//高精度除以低精度的余数
int Judge(char ch[])
{//判断字符串ch是否全为,若全为,返回,否则返回

int i,k;

k=strlen(ch);

for(i=0;i<k;i++) if(ch[i]!='0') return 0;

return 1;

}

int Compare(char a[],char b[])
{//比较字符串的大小,方法不同于strcmp函数,类似于整型常量的比较

int lena,lenb,i;

lena=strlen(a); lenb=strlen(b);

if(lena<lenb) return -1;

else if(lena>lenb) return 1;

else {

if(strcmp(a,b)==0) return 0;

else{ for(i=0;i<lena;i++){ if(a[i]>b[i]) return 1; if(a[i]<b[i]) return -1;}

return 0;

}}}

/*算法:先确定a和b中的最大位数k,然后依照由低至高位的顺序进行加法运算。

注意进位,若高位有进位,则c的长度为k+1。*/

//高精度加法

void BigNumberAdd(char a1[],char b1[])

{

int i,j,k,lena,lenb;

int a[1000]={0},b[1000]={0},d[1000]={0};

lena=strlen(a1);

lenb=strlen(b1);

for(i=0;i<lena;i++) //将加数与被加数化为整型数组,并且该数组的其他位为

a[i]=a1[lena-i-1]-'0';

for(i=0;i<lenb;i++)

b[i]=b1[lenb-1-i]-'0';

k=lena>lenb?lena:lenb;//当数组除了加数和被加数以外的整型数组元素均为时,无需考虑lena和lenb的大小

for(i=0;i<k;i++){ d[i]=a[i]+b[i]+d[i]; d[i+1]=d[i+1]+d[i]/10; d[i]=d[i]%10; }

while(d[k]) //若高位进

k++;

while(!d[k-1])

k--;//001+0003=4

for(j=0;j<k;j++) //将整型数组逆着转变并赋值给c字符型数组

c[j]=d[k-j-1]+'0';

if(Judge(c))//若全为,则只输出一个

strcpy(c,"0");

}

/*算法:依照由低位至高位的顺序进行减法运算。在每次位运算中,

若出现不够减的情况,则向高位借位。在进行了la的减法后,若最高

位为,则a的长度减。若A、B大小未知,则需先判断大小。*/

//高精度减法

void BigNumberSub(char a1[],char b1[])
{//a1为被减数,b1为减数

int lena,lenb,i,j,k,flag;

int a[1000]={0},b[1000]={0},d[1000]={0};

lena=strlen(a1);

lenb=strlen(b1);

if(Compare(a1,b1)>=0) {//若被减数大于等于减数

for(i=0;i<lena;i++) a[i]=a1[lena-1-i]-'0';

for(i=0;i<lenb;i++) b[i]=b1[lenb-1-i]-'0';

flag=0;//结果正的标志

}

else {//若被减数小于减数

for(i=0;i<lenb;i++) a[i]=b1[lenb-1-i]-'0';

for(i=0;i<lena;i++) b[i]=a1[lena-1-i]-'0';

flag=1;//结果负的标志

}

k=lena>lenb?lena:lenb;

for(i=0;i<k;i++)

{//大数减小数

if(a[i]<b[i]) {//若被减数不够减,向高位借一位

a[i+1]--;

d[i]=a[i]-b[i]+10; }

else d[i]=a[i]-b[i];

}

//若较高位已为,并且不止位时

while(!d[i-1])

{ k--; i--; }

//根据flag,输出有无"-"

if(!flag) { for(i=0;i<k;i++) {//将结果转化为字符逆着赋给数组c

if(!i&&!d[k-i-1])//若差的第一个字母为,则马上跳过

continue;

c[i]=d[k-i-1]+'0'; } }

else { c[0]='-'; for(i=1;i<=k;i++)

{//将结果转化为字符逆着赋给数组c

if(i==1&&!d[k-i])//若差的第一个字母为,则马上跳过

continue;

c[i]=d[k-i]+'0';//注意d的下标,不是k-i-1

}

}

if(Judge(c))//若差全为,则只输出一个

strcpy(c,"0");}

/*算法:将多位数存入数组,低位在前、高位在后,

然后用一位数去乘数组的各位,考虑进位,最后按正常顺序输出*/

//高精度乘法--高精度乘以低精度

void BigNumMultiSmall(char a1[],int b1)
{ int i,j,t;

int a[2000]={0};

//将字符串转化为整型数组,并逆置

t=strlen(a1);

for(i=0;i<t;i++) a[i]=a1[t-1-i]-'0';

//整型数组的每个元素乘以b1,然后对其进行求余,整除,使其只有一位数

a[0]=a[0]*b1;

for(i=1;i<t;i++) { a[i]*=b1; a[i]+=a[i-1]/10; a[i-1]=a[i-1]%10; }

while(a[i-1]>9)

{//若最后一个元素大于

a[i]=a[i-1]/10; a[i-1]=a[i-1]%10; i++;

}

//将得到的整型数组逆置赋给字符串

for(j=0;j<i;j++)

c[j]=a[i-j-1]+'0';

if(Judge(c))//若积全为,则只输出一个

strcpy(c,"0");

}

//高精度乘法--高精度乘以高精度

void BigNumMultiBig(char a1[],char b1[])
{ int i,j,k,lena,lenb;

int a[1000]={0},b[1000]={0},d[2000]={0};

//将字符串转化为整型数组,并逆置

lena=strlen(a1); lenb=strlen(b1);

for(i=0;i<lena;i++)

a[i]=a1[lena-i-1]-'0';

for(i=0;i<lenb;i++)

b[i]=b1[lenb-i-1]-'0';

//计算乘数从低位到高位以此乘以被乘数的低位到高位

for(i=0;i<lena;i++)

for(j=0;j<lenb;j++){ d[i+j]=d[i+j]+a[i]*b[j]; d[i+j+1]+=d[i+j]/10; d[i+j]=d[i+j]%10; }

//根据高位是否为判断整型数组的位数

k=lena+lenb;

while(!d[k-1])

k--;

//积转化为字符型

for(i=0;i<k;i++) c[i]=d[k-1-i]+'0';

if(Judge(c))//若积全为,则只输出一个

strcpy(c,"0");



//整型常量的阶乘

void BigNumFact(int x)
{ int i,k,m=0,a[1000]={0};

a[0]=1;

for(;x;x--)

{//m为在求阶乘过程中a的元素个数

for(k=i=0;i<=m;i++) { k=k+a[i]*x;//数组各个元素均乘以x(x递减),以完成阶乘的运算

a[i]=k%10;

k/=10;

}

while(k) { a[++m]=k%10; k/=10; }

}

//阶乘的结果转化为字符型

for(i=0;i<=m;i++) c[i]=a[m-i]+'0';

if(Judge(c))//若结果全为,则只输出一个

strcpy(c,"0");

}

//1-整型常量的阶乘和

void BigNumFactAdd(int t)
{

int i;

char sum[2000],d[2000];

//对字符串进行初始化

memset(d,0,sizeof(d)); memset(sum,0,sizeof(sum));

//分别求出相应i的阶乘然后相加

for(i=t;i>0;i--) { BigNumFact(i); strcpy(d,c); memset(c,0,sizeof(c)); BigNumberAdd(d,sum); strcpy(sum,c);

memset(c,0,sizeof(c)); }

strcpy(c,sum);//将结果赋值给全局变量,进行输出

}



//高精度的乘方,幂数为整型常量

void BigNumInvol(char a1[],int b1)
{ int i;

char temp[1000];

strcpy(temp,a1);//注意乘方是自己乘自己,而不是结果乘结果

for(i=2;i<b1;i++) { BigNumMultiBig(a1,temp); strcpy(temp,c); memset(c,0,sizeof(c));//将c清空,防止出现错误

}

//进行最后一次乘法

BigNumMultiBig(a1,temp); if(Judge(c))//若结果全为,则只输出一个

strcpy(c,"0");}

//高精度除法--高精度除以低精度,只产生余数

int BigNumDividSmall(char a1[],int b1)
{ if(!b1) return 0;

int i,j,k,flag=0,a[1000]={0};

char b[2000];

memset(b,0,sizeof(b));

k=strlen(a1);

for(i=0;i<k;i++) a[i]=a1[i]-'0';

z=0; for(i=0;i<k;i++) { z=a[i]+z*10; b[i]=z/b1+'0'; z=z%b1; }

i=j=0;

while(b[i++]=='0');

for(i=i-1;i<k;i++) c[j++]=b[i];

return 1;

}

//高精度除法--高精度除以高精度,只产生余数

void BigNumDividBig(char a1[],char b1[])
{

char a[1000],b[1000],time[1000];

int lena1,lentime,i,j,k,flag=0;

emset(arr,0,sizeof(arr));

//若被除数小于除数,则商为,余数为被除数

if(Compare(a1,b1)<0) strcpy(arr,a1);

//若两数相等,则商为,余数为

else if(!Compare(a1,b1)) c[0]='1';

//若被除数大于除数

else{ j=lentime=0; lena1=strlen(a1); memset(b,0,sizeof(b)); memset(time,0,sizeof(time));

for(i=0;i<lena1;i++)

{//计算得到被除数的前几位,得到整型数组形式的商

//time的一个元素表示一次相除的商

b[j++]=a1[i]; flag=0;

while(Compare(b,b1)>=0) {BigNumberSub(b,b1);strcpy(b,c);memset(c,0,sizeof(c));time[lentime]++;flag=1;//控制time的元素的位置

}

if(flag)//将商转换为字符

time[lentime]+='0';

else//当被除数前几位小于除数,商补

time[lentime]='0';

if(!strcmp(b,"0"))//若b为‘’

j=0;

else//继续在b的后面加值

j=strlen(b);

lentime++; }

k=0;

for(i=0;i<lentime;i++)

if(time[i]!='0')break;//找到time数组中第一个不为的位置

for(j=i;j<lentime;j++) c[k++]=time[j];

strcpy(arr,b); }

if(Judge(c))strcpy(c,"0");

if(Judge(arr)) strcpy(arr,"0");

}

int main()

{

int flag=0,a3,k,i;

char a2[1000],b2[1000];

printf("说明:该程序适用于正整数的高精度运算,并且运算结果的位数在位以内。\n");

while(1) {

printf("/************************/\n");printf("1、两数相加\n"); printf("2、两数相减\n"); printf("3、大数与低精度相乘\n"); printf("4、大数与大数相乘\n"); printf("5、大数的阶乘\n"); printf("6、大数的阶乘和\n"); printf("7、大数的乘方\n"); printf("8、大数除以低精度\n"); printf("9、大数除以大数\n"); printf("10、退出\n"); printf("/************************/\n"); printf("请输入你想要进行的操作数:"); scanf("%d",&k);

getchar();memset(c,0,sizeof(c));

switch(k) {

case 1: printf("请输入您想要进行运算的两个数字:\n"); scanf("%s%s",a2,b2); BigNumberAdd(a2,b2);

printf("%s+%s=%s\n\n",a2,b2,c); break;

case 2: printf("请输入您想要进行运算的两个数字:\n");scanf("%s%s",a2,b2); BigNumberSub(a2,b2);

printf("%s-%s=%s\n\n",a2,b2,c); break;

case 3: printf("请输入您想要进行运算的两个数字:\n");scanf("%s%d",a2,&a3); BigNumMultiSmall(a2,a3);

printf("%s*%d=%s\n\n",a2,a3,c); break;

case 4: printf("请输入您想要进行运算的两个数字:\n");scanf("%s%s",a2,b2); BigNumMultiBig(a2,b2);

printf("%s*%s=%s\n\n",a2,b2,c); break;

case 5: printf("请输入您想要的阶乘数:"); scanf("%d",&a3); BigNumFact(a3);printf("%d!=%s\n\n",a3,c); break;

case 6: printf("请输入您想要的阶乘数:"); scanf("%d",&a3); if(!a3) { printf("0!=1\n\n"); continue; }

BigNumFactAdd(a3); for(i=1;i<=a3;i++) { printf("%d!",i); if(i!=a3) printf("+"); }

printf("=%s\n\n",c); break;

case 7: printf("请输入您想要进行运算的两个数字:\n"); scanf("%s%d",a2,&a3); BigNumInvol(a2,a3);

printf("%s^%d=%s\n\n",a2,a3,c); break;

case 8: printf("请输入您想要进行运算的两个数字:\n"); scanf("%s%d",a2,&a3);if(BigNumDividSmall(a2,a3))

{ if(!z) printf("%s/%d=%s\n\n",a2,a3,c);

else printf("%s/%d=%s……%ld\n\n",a2,a3,c,z); } else printf("0不能作除数。\n\n"); break;

case 9:printf("请输入您想要进行运算的两个数字:\n"); scanf("%s%s",a2,b2); if(Judge(b2)) printf("0不能作除数。\n\n");

else { BigNumDividBig(a2,b2); if(!Judge(arr)) printf("%s/%s=%s……%s\n\n",a2,b2,c,arr);

else printf("%s/%s=%s\n\n",a2,b2,c); }break;

case 10:flag=1;printf("感谢您的使用,再见。\n\n");break;

default: printf("对不起,您的输入有误,请重新输入。\n\n"); }

if(flag) break;} return 0;}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值