配置VS Code和Jupyter的Python环境

前言

一、VS Code下载与安装

1.下载方法

登录VScode的官网下载,官网链接 Visual Studio Code - Code Editing. Redefined

【----帮助Python学习,以下所有学习资料文末免费领!----】

2.安装说明

当下载完成后,我们只要一直点“确认”同意就好。(注意更改安装路径,建议不要安装在C盘,且安装路径不要出现中文名)当出现图2-10时,不勾选“将Code注册为受支持的文件类型的编译器”,勾选其余4项。

在这里插入图片描述

图2-10 VS Code安装参数

解释以下这样做的原因。

1)将“通过Code 打开”操作添加到Windows资源管理器文件上下文菜单

2)将“通过Code 打开”操作添加到Windows资源管理器目录上下文菜单

3)说明:当鼠标对文件、目录点击右键时,可以出现选择使用VS Code打开。

4)将Code注册为受支持的文件类型的编辑器

5)说明:默认使用VS Code打开诸如后缀为“.txt”和“.py”等文本类型的文件(一般建议不勾选)。

6)添加到PATH(重启后生效)

7)说明:这步骤默认的,勾选上,就不用配置环境变量,可以直接使用。

8)做完安装说明,就可以一路选择默认配置并点击“OK”了。

二,VS Code配置Python环境

1.下载Python插件

打开VS Code后,如图2-11所示,界面说明如下。

在这里插入图片描述

图2-11 VS Code安装插件

这里,我们需要下载Python插件才能在VS Code中编辑Python代码,如图2-12所示,点击左栏插件图标,搜索Python。

在这里插入图片描述

图2-12 VS Code安装Python插件

2.选择Python解释器

按照如下四步来新建一个Python文件,并选择相应的Python解释器,如图2-13所示。

在这里插入图片描述

图2-13选择Python解释器

注意,第四步中,如果不显示Anaconda创建的Python环境,则可以点击上方的“Enter interpreter path…”选项,来手动选择Anaconda创建的Python解释器。

如果不清楚自己创建的Python环境在哪里,可以通过如下方法进行查询。

1.在Anaconda Prompt中激活想寻找的Python所在的环境。

conda activate env_name # 激活名为env_name的环境   

2.通过命令“where Python”查找路径,返回的输出即为“Python.exe”所在路径。

where Python  

3.这时可以在IDE中更改解释器路径为刚刚得到的路径(通过“Enter interpreter path”方法)。

如果更换的Python环境中已经下载完成PyTorch,可通过命令“import torch”运行查看是否产生错误报告。图2-14所示。

在这里插入图片描述

图2-14 VS Code导入PyTorch

三,Jupyter Notebook中配置Python环境

1. Anaconda的安装和使用

若已经下载过Anaconda,则不需要重复下载Jupyter Notebook,因为已经被集成在Anaconda中了。打开方式如下图2-15所示:菜单>Anaconda>Jupyter Notebook(Anaconda)

在这里插入图片描述

图2-15 打开Jupyer Notebook

打开后,系统会默认弹出一个Web网页和Jupyter终端。最小化终端即可(不要关掉),其中web网页则是我们编写代码的平台。使用方法如图2-16和图2-17所示。

在这里插入图片描述

图2-16 Jupyter使用方法

在这里插入图片描述

图2-17 Jupyer使用方法

2. Jupyter中选择Anaconda创建的Python虚拟环境

注意,在选择Python解释器时如果找不到Anaconda创建的Python虚拟环境,则通过下述方法解决。

1.首先,在Anaconda Prompt中先激活想要在Jupyter Notebook中使用的Python环境

2.然后,执行如图2-18所示的命令即可。

img

图2-18 下载ipykernel

完成后,如图2-19所示重新在菜单中开启Jupyter Notebook,再次新建文件时即可看到Anaconda管理的Python环境了。

在这里插入图片描述

图2-19 Jupyer加载Anaconda管理的Python环境

我下面也给大家整理了一些Python入门进阶的资料,大家不想一个一个去找的话,可以参考以下这些资料

零基础Python学习资源介绍

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)

👉Python必备开发工具👈

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

👉Python基础👈

在这里插入图片描述

👉Python自动化办公教程👈

在这里插入图片描述

👉python爬虫 👈

在这里插入图片描述

👉python机器学习 👈

在这里插入图片描述

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉100道Python练习题👈

检查学习结果。

👉面试刷题👈

在这里插入图片描述
在这里插入图片描述

资料领取

上述这份完整版的Python全套学习资料已经上传网盘,朋友们如果需要可以微信扫描下方二维码输入“领取资料” 即可自动领取
或者

点此链接】领取

好文推荐

了解python的前景:https://blog.csdn.net/xiangxue888/article/details/129726286

了解python的副业:https://blog.csdn.net/xiangxue888/article/details/129726009

### 如何在 Visual Studio Code 中设置 Jupyter Notebook 的 Python 环境 #### 配置官方 Python 扩展 为了使 Visual Studio Code 支持 Jupyter Notebook 功能,需安装 Microsoft 提供的 Official Python Extension。这一步骤确保了集成环境能够识别并处理 `.ipynb` 文件格式[^1]。 #### 下载与安装 Jupyter 插件 前往 VS Code 的扩展市场(可通过左侧活动栏中的图标或快捷键 `Ctrl+Shift+X` 访问),查找名为 "Jupyter" 的插件并完成安装过程。此操作为后续创建和编辑笔记本文件提供了必要的工具支持[^3]。 #### 新建 .ipynb 文件 当准备就绪后,在工作区新建一个带有 `.ipynb` 后缀名的新文件;双击该文件可激活交互式的编程界面。此时应注意观察左上角位置是否有可用的 Python 解释器选项——这是确认当前项目关联到正确 Python 版本的关键标志之一。 #### 设置合适的 Python 解释器 首次启动时可能不会立即显示出所使用的 Python 版本号。一旦尝试执行任何代码片段,则会被提示选择具体的解释器实例。务必挑选适合项目的那个版本来保障兼容性和性能表现。对于某些特定需求场景下的开发者来说,合理管理不同虚拟环境中各自的依赖关系显得尤为重要[^2]。 #### 处理缺失库的情况 初次加载过程中或许会碰到缺少必要组件的情形,比如 PyZMQ 库更新引发的问题等。面对这种情况不必惊慌失措,按照系统给出的指引逐步解决即可。通常情况下只需遵照指示点击相应按钮就能顺利完成所需软件包的自动下载与部署任务[^4]。 ```bash pip install pyzmq==19.0.2 -i https://pypi.tuna.tsinghua.edu.cn/simple/ ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值