配置VS Code和Jupyter的Python环境

本文详细介绍了如何下载和安装VSCode,包括安装过程中的注意事项,以及如何配置Python环境,包括安装Python插件和选择解释器。此外,还讲解了在JupyterNotebook中配置Python环境的方法,特别是如何在Anaconda环境下选择和使用Python虚拟环境。
摘要由CSDN通过智能技术生成

前言

一、VS Code下载与安装

1.下载方法

登录VScode的官网下载,官网链接 Visual Studio Code - Code Editing. Redefined

【----帮助Python学习,以下所有学习资料文末免费领!----】

2.安装说明

当下载完成后,我们只要一直点“确认”同意就好。(注意更改安装路径,建议不要安装在C盘,且安装路径不要出现中文名)当出现图2-10时,不勾选“将Code注册为受支持的文件类型的编译器”,勾选其余4项。

在这里插入图片描述

图2-10 VS Code安装参数

解释以下这样做的原因。

1)将“通过Code 打开”操作添加到Windows资源管理器文件上下文菜单

2)将“通过Code 打开”操作添加到Windows资源管理器目录上下文菜单

3)说明:当鼠标对文件、目录点击右键时,可以出现选择使用VS Code打开。

4)将Code注册为受支持的文件类型的编辑器

5)说明:默认使用VS Code打开诸如后缀为“.txt”和“.py”等文本类型的文件(一般建议不勾选)。

6)添加到PATH(重启后生效)

7)说明:这步骤默认的,勾选上,就不用配置环境变量,可以直接使用。

8)做完安装说明,就可以一路选择默认配置并点击“OK”了。

二,VS Code配置Python环境

1.下载Python插件

打开VS Code后,如图2-11所示,界面说明如下。

在这里插入图片描述

图2-11 VS Code安装插件

这里,我们需要下载Python插件才能在VS Code中编辑Python代码,如图2-12所示,点击左栏插件图标,搜索Python。

在这里插入图片描述

图2-12 VS Code安装Python插件

2.选择Python解释器

按照如下四步来新建一个Python文件,并选择相应的Python解释器,如图2-13所示。

在这里插入图片描述

图2-13选择Python解释器

注意,第四步中,如果不显示Anaconda创建的Python环境,则可以点击上方的“Enter interpreter path…”选项,来手动选择Anaconda创建的Python解释器。

如果不清楚自己创建的Python环境在哪里,可以通过如下方法进行查询。

1.在Anaconda Prompt中激活想寻找的Python所在的环境。

conda activate env_name # 激活名为env_name的环境   

2.通过命令“where Python”查找路径,返回的输出即为“Python.exe”所在路径。

where Python  

3.这时可以在IDE中更改解释器路径为刚刚得到的路径(通过“Enter interpreter path”方法)。

如果更换的Python环境中已经下载完成PyTorch,可通过命令“import torch”运行查看是否产生错误报告。图2-14所示。

在这里插入图片描述

图2-14 VS Code导入PyTorch

三,Jupyter Notebook中配置Python环境

1. Anaconda的安装和使用

若已经下载过Anaconda,则不需要重复下载Jupyter Notebook,因为已经被集成在Anaconda中了。打开方式如下图2-15所示:菜单>Anaconda>Jupyter Notebook(Anaconda)

在这里插入图片描述

图2-15 打开Jupyer Notebook

打开后,系统会默认弹出一个Web网页和Jupyter终端。最小化终端即可(不要关掉),其中web网页则是我们编写代码的平台。使用方法如图2-16和图2-17所示。

在这里插入图片描述

图2-16 Jupyter使用方法

在这里插入图片描述

图2-17 Jupyer使用方法

2. Jupyter中选择Anaconda创建的Python虚拟环境

注意,在选择Python解释器时如果找不到Anaconda创建的Python虚拟环境,则通过下述方法解决。

1.首先,在Anaconda Prompt中先激活想要在Jupyter Notebook中使用的Python环境

2.然后,执行如图2-18所示的命令即可。

img

图2-18 下载ipykernel

完成后,如图2-19所示重新在菜单中开启Jupyter Notebook,再次新建文件时即可看到Anaconda管理的Python环境了。

在这里插入图片描述

图2-19 Jupyer加载Anaconda管理的Python环境

我下面也给大家整理了一些Python入门进阶的资料,大家不想一个一个去找的话,可以参考以下这些资料

零基础Python学习资源介绍

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)

👉Python必备开发工具👈

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

👉Python基础👈

在这里插入图片描述

👉Python自动化办公教程👈

在这里插入图片描述

👉python爬虫 👈

在这里插入图片描述

👉python机器学习 👈

在这里插入图片描述

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉100道Python练习题👈

检查学习结果。

👉面试刷题👈

在这里插入图片描述
在这里插入图片描述

资料领取

上述这份完整版的Python全套学习资料已经上传网盘,朋友们如果需要可以微信扫描下方二维码输入“领取资料” 即可自动领取
或者

点此链接】领取

好文推荐

了解python的前景:https://blog.csdn.net/xiangxue888/article/details/129726286

了解python的副业:https://blog.csdn.net/xiangxue888/article/details/129726009

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值